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Abstract

In a last few years, there has been a surge of interest in the field of autonomous navigation and
exploration using drones. While there have been many advances made in the field, there has been
various challenges, yet to be tackled, for a safe navigation of Quad-copters amidst uncertain dynamic
obstacles. In this work, we attempt to tackle this problem by incorporating positional uncertainties of
drone and moving obstacles into a joint trajectory optimization framework.

In this thesis, we formulate a novel trajectory optimization scheme that takes into consideration the
state uncertainty of the robot and obstacle into its collision avoidance routine. The collision avoidance
under uncertainty is modeled here as an overlap between two distributions that represent the state of
the robot and obstacle respectively. Our framework is a generic framework and the idea proposed here
can be used to for any sets of distributions with characterizable overlap. In the scope of this thesis, we
model these distributions as Gaussian distributions. We adopt the minmax procedure to characterize the
area of overlap between two Gaussian distributions, and compare it with the method of Bhattacharyya
distance. Bhattacharyya distance is an approximate closed form characterization of overlap between
two Gaussian distribution. The Bhattacharyya distance is generalizable to other distributions too, if
their overlap can be characterized through some analytical closed form solution.

In this work, We provide closed form expressions that can characterize the overlap as a function
of control. We establish that our closed form approximations to characterize overlap is less erroneous
when compared with entropic distances like Bhattacharyya distance. Our proposed algorithm can avoid
overlapping uncertainty distributions in two possible ways. Firstly when a prescribed overlapping area
that needs to be avoided is posed as a confidence contour lower bound, control commands are accord-
ingly realized through a MPC framework such that these bounds are respected. Secondly in tight spaces
control commands are computed such that the overlapping distribution respects a prescribed range of
overlap characterized by lower and upper bounds of the confidence contours. We test our proposal
with extensive set of simulations carried out under various constrained environmental configurations.
We show usefulness of proposal under tight spaces where finding control maneuvers with minimal risk
behavior becomes an inevitable task.
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Chapter 1

Introduction

1.1 Motivation:

Quadcopter MAVs (Micro Aerial Vehicle) are an ideal choice for autonomous reconnaissance and
surveillance because of their small size, high maneuverability, and ability to fly in very challenging
environments. Quad-copters have innumerable applications in various domains including aerial photog-
raphy, drone delivery system, flight control research, law enforcement and humanitarian operations. To
perform these tasks effectively, the quad-copter MAV must be able to precisely avoid obstacles while
navigating from one point to another. The obstacles include static and dynamic objects as well as other
quad-copters operating in the surrounding environment. The field of obstacle avoidance for quad-copters
has been explored for quite a long time. Many algorithms proposed in past fails to produce desired result
because of the uncertainty involved in belief of the MAV/obstacle. A deterministic obstacle avoidance
algorithm is not an appropriate in unstructured and uncertain environments. This can lead to substantial
degradation in the desired result and can even make the source robot to collide into the obstacle, in the
worst case.

In order to deal with the challenges mentioned, we propose a probabilistic Model Predictive Control
framework for trajectory optimization of quad-copters. Model predictive control is proven to be an ef-
ficient framework due to its receding horizon planning capability. It is an optimization based approach
to handle arbitrary number of constraints on state and control. The framework optimizes the given cost
function which takes maneuverability and actuation limitations of the source robot into consideration.
In the work, a quadratic goal reaching objective is provided as cost in addition with a jerk cost to obtain
a smooth trajectory. We also incorporate actuation constraints to ensure kinematic feasibility of optimal
trajectory.
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Figure 1.1: We show result of our probabilistic obstacle avoidance algorithm in constrained corridor

when an obstacle is approaching in antipodal configuration. Figure 1.1(a) shows gazebo snapshot of

drone positions for two diffrent time instances. In figure 1.1(b). For example, at time t=19, we can

see clear overlap between 99% confidence contours of the drone, however, 70% confidence contours,

which correspond to lower bound are able to avoid penetration.
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1.2 Contributions:

In this work, there are several novel findings and it contributes in the following ways.

• This is first such formulation, conditioned on MAV and obstacle uncertainty into an MPC frame-
work through theory of overlapping Gaussians.

• We demonstrate why our modeling is more consistent and appropriate compared to entropic dis-
tances between probability distributions. We specifically compare our methodology with the clos-
est corresponding entropic distance, Bhattacharyya distance.

• We further introduce this particular uncertainty modeling into an optimal control framework, and
jointly optimize in both, the control and overlap parameter space. The overlap parameter can
be estimated through an iterative procedure. We exploit this procedure termination condition to
incorporate overlap parameter estimation procedure into our optimization routine.

• We show effective results in various simulation settings that showcase versatility of the method.
Specifically we show where the distributions are non isotropic, which is closer to real setting.

1.3 Organization:

The remainder of this thesis is organized as follows. Section 1.4 discusses earlier line of work.
Secion 1.5 talks about generic scheme of mathematical notations we will be following during this the-
sis. Chapter 2 briefly explains convex optimization and sequential convex programming. Section 2.3 in
chapter 2 walks through deterministic model predictive control framework. Chapter 3 talks about formu-
lating collision avoidance under uncertainty. It also outlines methods to quantify overlap between two
Gaussians through various methods. Chapter 4 talks about modeling probabilistic collision avoidance
using theory built section 3.3. In chapter 4, section 4.1, we talk about formulating trajectory optimiza-
tion algorithm under chance constraints. We show evaluation of trajectory optimization algorithm for a
simple case in section 4.2. In chapter 5, we evaluate proposed formulation into an MPC framework for
two scenarios. In section 5.1, we show results for antipodal configuration with 3 obstacles attacking a
drone in antipodal configuration. In section 5.2 we show results for tightly bounded constrained corridor
setting. In chapter 6, we conclude the paper and discuss future scope of improvement.

1.4 Related work:

This section review the recent advances in MPC for autonomous navigation. The evident advantage
of using MPC in motion planning and autonomous navigation has been well demonstrated in ([3],[13],
[12], [22]) among many. Authors in [3] use an alternating minimization approach to solve control prob-
lem for a non-holonomic bot(Car). The MPC routine proposed there incorporates non-linear actuator

3



dynamics of the car and solves for linear velocities and angular velocities alternatively. Authors in [13]
use simplified dynamics of the vehicle to predict its state for a look-ahead horizon. To compensate
the dissimilarity occurring due to simplification of the true model of the vehicle, a parallel controller
is devised to track the generated trajectory. Formulations along the lines of [3], [13] do a great job
in achieving performance in terms of quality of trajectory, computation time and novelty of approach.
However, the limitation of these approaches is that they have been developed to tackle deterministic
trajectory optimization routine and hence do not take into consideration the uncertainty in state of the
robot and obstacle into their collision avoidance routine.

Authors in [22] introduced a receding horizon non-linear model predictive control with characteriza-
tion of road-boundaries, future uncertainties of various other vehicles being supplied to the optimization
routine. They attempt to minimize the deviation from human inputs through parallel autonomy shared-
control framework to produce safe trajectories in complex urban settings. The objective here is to
minimize deviation from human inputs while ensuring a collision free trajectory generated after con-
sidering future uncertainties into consideration. MPC formulations along these lines do take the state
uncertainty and demonstrate interesting maneuvers in complex driving scenarios, [22] considers uncer-
tainty only in the state of the obstacle, and the collision avoidance is modeled through a Minkowski sum
approach. Considering robot’s uncertainty into Minkowski sum formulation would be very cumbersome
as Minkowski sum between two ellipses is very complex.

Authors in [7] proposes a non-linear model predictive control framework for motion planning for
quad-copters. It incorporates a specified uncertainties of drone to plan trajectories satisfying minimum
safety margin requirements. It is a static obstacle avoidance routine with objective of reaching close
to a desired goal location. The obstacle is assumed to be deterministic in nature, hence only drone
uncertainty is taken into consideration while path planning.The collision avoidance routine is modeled
as a measure of entropic distance(Similar to Mahalanobis distance[25]). It is shown in the later section
of this thesis that formulating probabilistic collision avoidance as an entropic distance may not be the
most appropriate approach when uncertainty in the robot and obstacle is considered.

[24] attempts to solve for collision avoidance in a multiagent scenario under uncertainty. The plan-
ning objective is to find a path with minimum probability of collision. The bot of consideration is a
car-like robot which is approximated as a disc make the formulation independent of car’s heading. A
priority based multi-agent robot planning routine is proposed, with the objective of each robot being,
avoidance of all robots with higher priority than them. The objective is achieved through RRT frame-
work. Multiple paths from start to goal is sampled and a-priori probability distribution is estimated for
each sampled path, and a path with desired level of safety confidence is chosen as a best path.

Formulating collision avoidance as a chance constraint is well explored in [8],[9] among the many.
[9] demonstrates an efficient way of solving an intractable chance constraint through a series of refor-
mulations. These were built on time scale velocity obstacle concepts [23].

Authors in [4] solves problem of obstacle avoidance using disjunctive linear programming. The
convex polyhedral obstacles are represented using a set of linear constraints and obstacle avoidance
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constraints are reformulated as linear chance constraints. These linear chance constraints are translated
it into a deterministic chance constraint using inverse cumulative Gauss error function. This work takes
nonconvex feasible regions, solved using mixed integer linear programming. They decompose the non-
convex joint chance constraint using Boole’s inequality. In this work, individual risk was uniformly
distributed across individual chance constraints. In continuation of work in [4], authors in [17] propose
an approach to planning a control sequence with a guaranteed risk bound. The idea is to decompose a
joint chance constraint into an individual chance constraints using Booles inequality and devising a risk
allocation strategy to optimally distribute risk bounds among individual chance constraints. The authors
proves the convexity of iterative risk allocation mechanism for linear systems in [18].

In [16], authors extend their prior work([17], [18], [4]) to non-convex feasible state regions. The
chance constraints describing these non-convex feasible regions are recursively decomposed into lin-
ear/disjunctive/conjunctive state constraints which is represented as a tree like structure. The authors
do tackle the problem of control sequence optimization problem for non-convex chance constraints. In
our approach, we have statistically intractable non-linear chance constraint equation that we propose to
solve using our newly devised method which exploits theory of overlapping Gaussians.

Another way to approach this problem was presented in [5], where authors propose a method for
chance constrained predictive stochastic control of dynamic systems. The method approximates dis-
tribution of the system using a finite number of particles. These particles are expressed as a function
of control, and thus the original stochastic problem is approximated as a deterministic one. Sampling
based method is theoretically applicable to any chance-constrained stochastic control problem including
non-convex ones, but it requires higher number of samples for greater accuracy. Approximating distri-
bution with higher number of particles is computationally expensive, which prevents this method from
practical usage.

Probabilistic sulu planner has been proposed in [19], which is a model based planner with objective
of risk-sensitive planning and goal directed planning with temporal constraints. Proposed probabilistic
sulu planner enables users to command plant in an intuitive and safe way. We are trying to achieve
similar objective for moving obstacle and non-linear chance constraints.

All these papers([17], [18], [4], [5], [19], [16]) show results for static or time independent feasible
regions. In this thesis, we are attempting to solve stochastic control problem for time-parameterized
feasible regions. Meaning, our feasible regions will be subject to evolution due to moving obstacles
into the picture. Further, the feasible regions are expressed as some combination of linear chance con-
straints. However, the chance constraint we are dealing with in this work is non-linear in nature. Hence,
we model it using overlap of Gaussians and empirically validate this particular modeling in figure 3.5.
These methods do not take obstacle uncertainty into consideration, which can work well for static ob-
stacles. However, for moving obstacles, there will always be uncertainty associated in the detection
pipeline, resulting in erroneous estimation and future anticipation. It is not necessary to have determin-
istic infeasible region. Modeling moving obstacle avoidance constraints in a time-parameterized manner
using combination of linear constraints could be an exhaustive way of approaching the problem. Num-
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ber of linear constraints can blow up to large values depending upon shape of the obstacle. Depending
on number of moving obstacles, we can have very large number of constraints. As opposed to that, our
current approach has fixed number of constraints once number of obstacles and horizon length are fixed.

In this work, we look at an alternative take on modeling probabilistic collision avoidance as a chance
constraint that could seamlessly integrate itself into an MPC framework. We accomplish thus by re-
formulating collision avoidance as a measure of overlap between two Gaussians(representing state un-
certainties of the robot and obstacle). By such a reformulation, we easily avoid the complexity of con-
sidering Minkowski sums between two ellipses and other approaches that model probabilistic collision
avoidance through entropic distances.

1.5 Symbols and notation:

There are several variables of interest to us. We will follow a generic notation scheme.

A variable of interest for drone at some time instance ti will be expressed in form of ξd
ti

,

• ξd
ti

: Superscript d denotes that we are talking about drone, while subscript ti conveys that we are
currently talking about time-step ti.

Example: Uncertainty of the drone at time ti is denoted by Σd
ti

.

A variable of interest for obstacle j at time instance ti will be expressed in form of ξoj

ti

• ξoj

ti
: Superscript oj denotes that we are talking about obstacle j, while subscript ti conveys that

we are currently talking about time-step ti.

Example: Uncertainty of the obstacle j at time ti is denoted by Σ
oj

ti
.

Apart from that, we have serveral variables which are of mutual interest. A variable of mutual interest
of obstacle j and drone at time ti will be expressed in form of ξj

ti

• ξj
ti

: Superscript j denotes that we are talking about obstacle j and drone, while subscript ti con-
veys that we are currently talking about time-step ti.

Example: Overlap between Gaussian populations of obstacle j and drone at time ti is
defined as Υj

ti
.

This is main scheme of notations we will follow throughout this thesis. Other notations are defined
as and when they come up.
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Chapter 2

Discrete time optimal control and deterministic MPC framework

This chapter will introduce a deterministic MPC framework, formulated along the lines of [3]. We
will first walk through a generic discrete time optimal control framework and then introduce deter-
ministic trajectory optimization routine along those lines. The motion model considered here is of a
holonomic bot, and obstacle avoidance is added as an affine constraint. The entire framework is solved
as a sequential convex programming(SCP) routine[21]. We will briefly walk through basics of convex
optimization and sequential convex programming.

2.1 Convex optimization and sequential convex programming(SCP)

2.1.1 Convex optimization

Convex optimization is a sub-field of optimization that deals with minimization of convex functions
over some convex sets. A set is a convex set if all the points lying on the line-segment constructed by
joining any two points of the set belong to the set. A convex optimization problem can be defined as
below,

minimize
x

f(x) (2.1a)

subject to

h1(x) ≤ 0 (2.1b)

h2(x) = 0 (2.1c)

Here, x ∈ Rn is our variable of interest and f : Rn → R is a convex cost function. h1(.) and h2(.)

are inequality and equality constraints over variable of interest x. For equation 2.1 to be a convex
optimization problem, h1(.) has to be a convex function. While h2(.) represents affine equalities.
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2.1.2 Sequential convex programming

In real life, we face many problems which are not convex in nature. Many real life problems are
non-convex in nature. In order to solve them, we convexify the problem around current solution and
sequentially keep solving it until objective is optimized. SCP doesn’t guarantee to find global optima,
even if it exists. Results vary on initial points around which problem is convexified. In practice, sequen-
tial convex programming works well, and gives fairly acceptable objective value, if not optimal. There
could be various reasons for a problem to be non-convex in nature. It is possible that f(.),h1(.) are not
convex and/or h2(.) is not affine in nature. When objective is convex, one way to solve the problem
is to linearize non-convex constraints around guess solution and iteratively refining the solution. In the
next section, we will review linerization process for a function around some guess point.

2.1.3 Linearization of a function:

Linearization or linear approximation of a function can be used to approximate a non-linear function
around a particular point. For smooth curves, we can approximate a small neighbourhood around a
particular point as linear segment and can treat a function in that region as linear function. The approx-
imation is based on slope of the function at point of interest. Let f : R2 → R be non-linear function
with two input variables. We can linearly approximate f(x,y) around point (x1,y1) as below,

f(x,y) = f(x1,y1) +
∂f(x,y)

∂x

∣∣∣∣
(x1,y1)

(x− x1) +
∂f(x,y)

∂y

∣∣∣∣
(x1,y1)

(y − y1) (2.2a)

Above equation naturally extends to multidimensional setting, and can be expressed as below.

f(x) = f(x1) + Of |x1(x− x1), where x ∈ Rn (2.3a)

In above equation, Of |x1 is a jacobian of f with respect to x, evaluated at x1. We will heavily use
multidimensional linearization method to convexify our problem.

2.2 Discrete time optimal control:

In discrete time optimal control, we optimize over control sequence to achieve desired objective. Our
objective could vary from goal reaching to achieving desired velocity/acceleration in a given amount of
time. We assume to know the transition dynamics of the system. Let the set of controls to be executed
are U = {u1,u2,u3, ...un} and set of states are X = {x1,x2,x3, ...xn}. Our goal is optimize over
state and control variables to achieve optimal objective value. We can describe our problem as below,

8



minimize
X,U

Φ(X,U) (2.4a)

subject to

xt+1 = f(xt,ut) (2.4b)

xmin ≤ xt ≤ xmax for t = {1,2,3, ...,N} (2.4c)

umin ≤ ut ≤ umax for t = {1,2,3, ...,N} (2.4d)

g1(U) ≤ 0 (2.4e)

g2(U) = 0 (2.4f)

Equation 2.4 describes entire control optimization routine. Our objective can be expressed in a
functional form as equation 2.4a. Here, our goal is to find optimal control sequence. The control and
state variables are constrained due to limitations of physical dynamics of the system. Equation 2.4b
models transition dynamics of the system. It ensures that our solution adheres to the transition/motion
model of the system. Equation 2.4c limits state space values of our system. 2.4d ensures feasible control
command values. Equation 2.4e-2.4f are set of inequality and equality constraints in the control space.
These variables ensure that actuation capability of the system is not violated.

2.3 Deterministic model predictive control

In deterministic model predictive control, our objective is to reach the goal in a given amount of time
while ensuring a collision-free trajectory. The problem is modeled by considering a set of cost functions
and constraints. We are modeling this problem for a quadcopter which is a holonomic vehicle. Since we
are talking about deterministic modeling, we don’t consider any uncertainty in drone or obstacle’s state.

Let the start position of the drone be X0 = (x0, y0, z0). Our objective is to reach the goal position
Gf = (Gx

f , Gy
f , Gz

f ) in N time-steps, each time-step of duration τ . The state of the drone at any time
instant ti is Xti = (xti , yti , zti , vx

ti
, vy

ti
, vz

ti
). Where Vti = (vx

ti
, vy

ti
, vz

ti
) is the velocity of the drone

at time instant ti. We have P obstacles in the environment. Their position at time ti is defined as Oj
ti

=
(oxj

ti
, oyj

ti
, ozj

ti
), for ∀ j = {1, 2, 3, ... P}. For static obstacles, the obstacle locations will be independent

of ti. The drone and obstacles are approximated as circular objects with radius of the drone being
Rdrone and radius of obstacle j is Rj, ∀ j = {1, 2, 3, ... P}. Given this, we will define our trajectory
optimization routine as below,
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argmin
Vti

J = Jterminal + Jsmooth (2.5a)

subject to

Xti+1 = f(Xti ,Vti) (2.5b)

Vmin ≤ Vti ≤ Vmax (2.5c)

amin ≤
Vti+1 −Vti

τ
≤ amax (2.5d)

Cobsj (xti ,yti , zti ,o
xj
ti
,oyj

ti
,ozj

ti
,Rdrone,Rj) ≤ 0 (2.5e)

The above set of equations defines the cost function as well as constraints. The objective function as
described in equation 2.5a. The cost function can be broken down into two parts.

Jterminal = (xtN −Gx)2 + (ytN −Gy)2 + (ztN −Gz)2 (2.6a)

The terminal cost forces our system to achieve goal-state(Gf ) at the end of the trajectory.

Jsmooth =
N−1∑
i=2

(
(Vti+1 + Vti−1 − 2Vti)

τ2
)2 (2.7a)

The smoothness cost as described above ensures smooth trajectory with minimal jerk. It minimizes
the jerk which is modeled as second order finite difference between subsequent linear velocities. This
term penalizes sudden deviations in the acceleration profile and ensures smooth velocity transitions.

Equation 2.5b is the process model of the vehicle. These equations ensure that control variables
and states are adhering the motion model of the drone. The motion model for holonomic bot can be
described as following,

xti = f (x0,v
x
t1 ,v

x
t2 , ...v

x
ti
, τ) = x0 +

i∑
k=1

vx
tk
τ (2.8a)

yti = f (y0,v
y
t1
,vy

t2
, ...vy

ti
, τ) = y0 +

i∑
k=1

vy
tk
τ (2.8b)

zti = f (z0,v
z
t1 ,v

z
t2 , ...v

z
ti
, τ) = z0 +

i∑
k=1

vz
tk
τ (2.8c)

Equations 2.5c-2.5d, represents constraints to model actuation limitations of the drone. The bounds
on linear acceleration and velocity ensures that the actuation capabilities of the drone are not violated.
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Equation 2.5e models collision avoidance constraint between obstacle j and drone. For a determin-
istic setting, this will be a simple euclidean distance constraint as below.

Cobsj (.) = −(xti − oxj
ti

)2 − (yti − oyj
ti

)2 − (zti − ozj
ti

)2 + (Rj + Rdrone)2 ≤ 0 (2.9a)

Above constraint is purely non-linear in nature for drone position variable (xti , yti , zti). We linearize
it along the lines of [3] and solve the proposed routine using sequential convex programming. We can
linearize it around guess trajectory (x∗ti , y∗ti , z∗ti). Equation 2.9a will look like the following,

Caff
obsj

(.) = Cobsj (x
∗
ti
,y∗ti , z

∗
ti

) +
∂Cobsj

∂xti

∣∣∣∣
(x∗ti

,y∗ti
,z∗ti

)

(xti − x∗ti) +

∂Cobsj

∂yti

∣∣∣∣
(x∗ti

,y∗ti
,z∗ti

)

(yti − y∗ti) +
∂Cobsj

∂zti

∣∣∣∣
(x∗ti

,y∗ti
,z∗ti

)

(zti − z∗ti) (2.10a)

Note that above equation is written for obstacle j. We will have P equations similar to 2.10a. This
forms our trajectory optimization routine.

Model predictive control routine is built upon this trajectory optimization routine. MPC relies on
dynamic model of the process. In MPC, we plan in receding horizon fashion based on process model
and other system constraints. Advantage of MPC is that it doesn’t optimize for immediate timestep, but
rather, a sequence of timesteps, and then executes current control only. Then it recomputes next set of
controls for some finite horizon before executing control command for next timestep. MPC has sense of
what is coming and it can foresee the future for some finite horizon. Next control command is heavily
dictated by anticipation of future events. PID controllers do not have such anticipation capability. Hence,
MPC is universally used controller when system dynamics are either knows or can be identified.
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Chapter 3

Characterizing overlap between two Gaussian distributions

In this chapter, we will walk through 3 important ways to characterize overlap between two Gaussian
distributions. But, before that, we will talk about how our collision avoidance constraint of equation 2.5e
will look like under uncertain obstacles. Then we will talk about modeling this equation using 3 different
ways.

In real life, Robot motions are generally erroneous in nature. There is always some uncertainty
associated with the location of the drone. Apart from that, the sensing module also gives inaccurate
estimate of the state of the obstacle. Uncertain position estimate of the obstacle leads to erroneous
trajectory estimation. In such cases, the constraint in equation 2.5e takes the form of 3.1a,

Prj(Cobsj (xti ,yti , zti ,o
xj
ti
,oyj

ti
,ozj

ti
,Rdrone,Rj) ≤ 0) ∀ j ∈ {1, 2, 3, ... P} (3.1a)

Constraints of the form 3.1a, are generally known as chance constraints, and in most cases may
not have a distribution that can be computed in closed form. The nature of these chance constraints
also depends on the form of the deterministic constraints that they are built on. For example chance
constraint 3.1a arising out of 2.9a can be expressed as an entropic distance. The following three sections
provide a detailed discussion on three important ways to formulate a chance constraint.

3.1 Theoretical characterization of chance constraint

The chance constraint in 3.1a can take the form of a transformed distribution of 2.9a as shown in
Equation 3.2a,

∫
· · ·
∫
Vj

Pr(Dti ,O
j
ti

)dDtidO
j
ti

(3.2a)
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Where, Dti = (xti ,yti , zti), position of the drone at time ti. Under state uncertainty, let Dti ~
N (D̂ti ,Σ

d
ti

) and Oj
ti

~ N (Ôj
ti
,Σ

oj

ti
) be the Gaussian parameterization of the drone and obstacle j

positions at time ti respectively. Then, Pr(Dti ,O
j
ti

) takes the following form,

Pr(Dti ,O
j
ti

) ∼ N (

(
D̂ti

Ôj
ti

)
,

(
Σd
ti 0

0 Σ
oj
ti

)
) (3.3a)

When we substitute equation 3.3a in equation 3.2a, equation 3.2a becomes analytically intractable.
The closed form solution of equation 3.2a doesn’t exist. Authors in [24] attempted to tackle problem
of multi-robot motion planning for differential drive robots, where the authors numerically evaluate
equation 3.2a over the region of interest. The region of interest here would be set of positions of the
drone and obstacles for which collision occurs. Our objective would be to minimize the value of 3.2a,
which means we want to maximize the probability of collision avoidance. However, one drawback of
this procedure is that characterization of such a region(Vj) is generally tough.

Uncertainty matrices(Σd
ti
,Σ

oj

ti
) have been scaled up to accommodate radius values Rdrone and Rj.

There has been a lot of work to characterize the entropic distance between two distributions. One of
the commonly used techniques for entropic distances are chi-square distances, Bhattacharyya distances
among the many. We describe case of Bhattacharyya distances which is an extension to Mahalanobis
distance[25]. Mahalanobis distance[25] is useful to characterize distance between a distribution and a
point. While Bhattacharyya distance is useful in charaterizing distance between two distributions.

3.2 Bhattacharyya distance

Bhattacharyya distance gives measure of similarity between two continuous/discrete probability dis-
tributions. It attempts to quantify the overlap between two distributions. For two discrete distributions
p1 and p2 over some domain X, we can define Bhattacharyya distance as below,

BC(p1,p2) = −ln
(∑

x=X

√
p1(x)p2(x)

)
(3.4a)

The argument of log function in equation 3.4a,
∑

x=X

√
p1(x)p2(x) is known as Bhattacharyya

coefficient. Equation 3.4a can be easily extended when p1 and p2 are continuous distributions. Equation
3.4a takes following form

BC(p1,p2) = −ln
(∫ √

p1(x)p2(x) dx

)
(3.5a)
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Figure 3.1: Diagrammatic explanation of why Bhattacharyya distance is not a perfect metric to model

chance constraint problem. In the figure, we have taken 2 sets of Gaussian distribution pairs which

are touching at same confidence contour of 80.51%. Meaning, area of overlap between two Gaussians

shaded in yellow is same for both sets of Gaussian distributions. For figure 3.1(a), Σ1 = ( 0.04 0
0 0.02 ),

Σ2 = ( 0.02 0.01
0.01 0.02 ). Bhattacharyya distance evaluated using equation 3.7a for this set of covariances turns

out to be 1.7105. While, for figure 3.1(b), Σ1 = ( 0.01 0
0 0.02 ), Σ2 = ( 0.03 0

0 0.03 ). Value of Bhattacharyya

distance for figure 3.1(b) is 1.6079. Hence, for same amount of overlap between two sets of Gaussian

distributions, Bhattacharyya distances are turning out to be different. Areas shaded with yellow in figure

indicate amount of overlap.
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Equation 3.5a is a generic Bhattacharyya distance between 2 distributions. In this thesis, we are
dealing with Gaussian distributions. Bhattacharyya distance between two Gaussian distributions has a
closed form analytical characterization. For two univariate Gaussian distributions pi = N (µi, σ2

i ) with
i = {1,2}, their Bhattacharyya distance can be expressed as below,

BC(p1,p2) =
1

4
ln

(
1

4

(
σ21
σ22

+
σ22
σ21

+ 2

))
+

1

4

(
(µ1 − µ2)2

σ21 + σ22

)
(3.6a)

Equation 3.6a can be computed from equation 3.5a. In our problem, we attempt to solve 3D obstacle
avoidance problem. Hence, we need multidimensional characterization of Bhattacharyya distance for
two multivariate normal distribution. 3.6a can be easily extended for two multivariate Gaussian distri-
butions. Bhattacharyya distance metric between pi = N (µi, Σi) with i = {1,2} can be expressed as
below,

BC(p1,p2) =
1

8
(µ1 − µ2)TΣ−1(µ1 − µ2) +

1

2
ln

(
det(Σ)√

det(Σ1)det(Σ2)

)
(3.7a)

In above equation, Σ =
(
Σ1 + Σ2

)
/2. This is an extension of Mahalanobis distance. However,

equation 3.1a can not be completely characterized through similarity/dissimilarity given by such en-
tropic measure. Bhattacharyya distance does not obey triangle inequality. The notion of probability is
not complete in Bhattacharyya metric and particular distance doesn’t map to a certain value in proba-
bility space. In figure 3.1, we demonstrate that for different Gaussian distributions with same overlap
have different Bhattacharyya distances. Due to this limitation, entropic distance can’t be used to model
chance constraint. In the next section, we will talk about another method to characterize overlap between
two Gaussian distributions which is relatively more accurate than Bhattacharyya distance.

3.3 Theory of overlapping of Gaussians

The theory of overlap between two Gaussians has widely been studied in [15], which is built upon
[2]. The authors in [2] attempts to get an optimal linear separator which minimizes the misclassification
error when the objective is to classify the sample as coming from one of the several populations. We
briefly state the theory to get approximate estimate of component of overlap between two Gaussians.
The linear separator proposed in[2] works for two Gaussians of dimension d ≥ 1.

Let the linear separator(a hyperplane in d dimensional space) be αTx = β where α,x ∈ Rd and
β ∈ R. αTx ≤ β classifies x into a first cluster and αTx > β classifies x into second cluster. We will
briefly explain the procedure to obtain α, β and estimate the area of overlap(Υ) between two Gaussian
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distributions N (µi, Σi) with i = {1,2}. x is coming from one of the above two Gaussian distributions.
αTx is a transformation which transforms the original distribution into univariate normal distribution.
The probability of misclassification when x is coming from first distribution is,

P1(α
Tx > β) = P1(α

Tx− αTµ1 > β − αTµ1)

= P1

(
αTx− αTµ1√

αTΣ1α
>
β − αTµ1√
αTΣ1α

)

= 1−Φ

(
β − αTµ1√
αTΣ1α

)

= 1−Φ(η1)

= P1(η1) (3.8a)

Similarly, probability of misclassification when sample x belongs to population 2 equals,

P2(α
Tx ≤ β) = P2(α

Tx− αTµ2 ≤ β − αTµ2)

= P2(
αTx− αTµ2√

αTΣ2α
≤ β − αTµ2√

αTΣ2α
)

= 1−Φ(
αTµ2 − β√
αTΣ2α

)

= 1−Φ(η2)

= P2(η2) (3.9a)

Here, η1 and η1 are normalized means of original distributions. η1 = β−αTµ1√
αTΣ1α

and η2 = αTµ2−β√
αTΣ2α

are two random variables with univariate standard normal distribution. Φ in equations 3.8-3.9 denotes
a cumulative distribution function for a univariate standard normal distribution. Φ is a monotonically
increasing function. Our objective is following,

max(P1(η1),P2(η2))→ min
α∈Rdβ∈R

(3.10a)

min(η1, η2)→ max
α∈Rdβ∈R

(3.10b)
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Equation 3.10a can be read like this. To get minimum error of misclassification, our objective is to
minimize the maximum of P1(η1) and P2(η2). Equation 3.10b can be thought of as maximization of
minimum of η1 and η2.

Equations 3.10a-3.10b are equivalent due to monotonic nature of the Φ. The objective is to maximize
the minimum of (η1, η2). The objective is to find α, β, which will minimize the maximum probability
of misclassification. Analytical characterization of α, β in terms of µ1,Σ1, µ2,Σ2 can be expressed as
following,

α = (λ1Σ1 + λ2Σ2)−1(µ2 − µ1) (3.11a)

β = αTµ1 + λ1α
TΣ1α = αTµ2 − λ2αTΣ2α (3.11b)

Here, λ1 and λ2 are two scalars and resulting procedure to estimate these parameters is referred
to as minmax procedure. The minmax procedure is an admissible procedure[2] when η1 = η2. For
admissible procedure, λ = λ1 = 1 - λ2. If we substitute analytical characterization of α, β in η1, η2, the
following equality must hold for admissible procedure.

η21 − η22 = αT [λ2Σ1 − (1− λ)2Σ2]α = 0 (3.12a)

The above criterion is a necessary condition to get the best approximation of the amount of overlap.
We will call λ overlap parameter as it is a deciding factor which completely characterizes the overlap
for a given first and second order Gaussian moments.

Here, the value of overlap parameter λ is determined heuristically using equation 3.12a as a base
condition. Algorithm 1 outlines method to estimate λ’s value.. The overlap parameter λ completely
dictates the linear separator parameters α and β. Once we get optimal value of λ, we can estimate
linear separator parameters α, β. Since the procedure is admissible, we can compute P1(η1) = P2(η2) =
Pminmax. The amount of overlap(Υ) can be computed as below,

η1 = h1 (α, β), α = h2 (λ), β = h3 (λ)

Υ = P1(η1) + P2(η2) = 2Pminmax = h(µ1, µ2,Σ1,Σ2, λ)

(3.13a)

Here, we can notice that component of overlap(Υ) is parameterized by linear separator parameters
α and β. Overlap λ is completely dictating α and β. Hence, λ dictates the amount of overlap Υ.
Here, λ is determined through an iterative procedure. As seen in figure 3.2, the overlap is determined
by substituting for different values of λ in 3.13a, a typical iterative routine settles for some value of λ,
when the overlap is correctly determined, this can be noticed in Fig 3.2(d)-3.3(b).
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Figure 3.2: This figure demonstrates how the values of overlap parameter λ evolves as algorithm 1 exe-

cutes. It starts with initialized value of λ and ultimately converges to the value where the linear separator

divides the two Gaussian distributions at the same confidence interval. From figure 3.2(a) -3.2(d), the

Gaussian configuration considered is same as that of figure 3.1(a). Both the Gaussian distributions are

touching at confidence contour corresponding to 80.51%. Equality constraint of equation 3.12a en-

sures that both the Gaussians are touching at the same confidence interval. The line drawn in the figure

is αTx = β. We can see orientation and position of the line evolving as overlap parameter λ converges.

For converged value of λ, we can see that the optimal linear separator passes through the point of touch

of the two Gaussian distributions.
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Algorithm 1 Overlap Estimation(µ1, Σ1, µ2, Σ2, precision)

1: initialize increment, criterion, λ

2: repeat

3: calculate α with 3.11a(a)

4: calculate criterion with 3.12a

5: if criterion > precision

6: then λ← λ - increment

7: if criterion < -precision

8: then λ← λ + increment

9: increment← increment
2

10: until -precision ≤ criterion ≤ precision

11: return λ

Figure 3.3: This figure 3.3(a) -3.3(b) shows λ converging for Gaussian configuration considered in figure

3.1(b). We can see value of overlap turning out to be same for both sets as shown in figure 3.2(d)-3.3(b).
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Figure 3.4: This figure 3.4 conveys how overlap between Gaussian distribution varies as different con-

fidence contours touch each-other. The blue curve in figure shows overlap relation between various

confidence contours of two bivariate Gaussian distributions while orange curve shows the same relation

between two trivariate Gaussian distributions.

When we estimate area of overlap for the two sets of Gaussian distributions in figure 3.1 using al-
gorithm 1, the area of overlap turns out to be Υ = 0.0706, which is same for both sets of Gaussian
distributions shown in figures 3.1(a) and 3.1(b). This leads to the fact that for any two 2D Gaussian
distributions touching at the confidence interval of 80.51%, their area of overlap will always be equal
to 0.0706. In other words, there is a unique mapping between area of overlap of two k variate Gaus-
sians and confidence contours ct(where they are touching each other). The current scope of this paper
explores this concept for k = 2,3. We create a table that would give us unique value of overlap for a
given value of ct. We show relation between contour of touch(ct) and area of overlap(Υ), in figure 3.4.
Here, We demonstrate in figure 3.5 that minimization of overlap between two Gaussians is analogous to
maximization of probability of collision avoidance.
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(a)

(b)
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(c)

Figure 3.5: We establish an analogy between minimization of overlap between Gaussians as maximiza-

tion of probability of collision avoidance modeled according to equation 3.1a. Through an illustration,

we demonstrate that as the amount of overlap between two distributions decreases, probability of colli-

sion avoidance increases. This is aptly conveyed through figure 3.5a-3.5b-3.5c. For example, in figure

3.5a, for a significant amount of overlap, the area below 0 in the cdf plot is very less. However, in figure

3.5b and 3.5c, as the overlap decreases(achieved through incrementally separating µ2 from µ1), the

corresponding area below 0 observed in the cdf plots significantly increases. Thus, it is clear that as the

overlap between these two distributions decreases, the probability of collision avoidance[3.1a](conveyed

through cdfs) increases. The cdf plots of equation 3.1a were generated through ecdf() function of Mat-

lab. The covariances considered for this demonstration are, Σ1 = ( 0.01 0
0 0.02 ) and Σ2 = ( 0.03 0

0 0.03 ).
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Chapter 4

Probabilistic collision avoidance as overlap between two Gaussians

Equation 3.2a represents analytical expression of chance constraint defined in chapter 3. Our ob-
jective is to maximize the probability of collision avoidance. Here, we propose a novel formulation
by posing chance constraint problem as minimization of overlap between component of two Gaussian
distributions.

4.1 Trajectory optimization with chance constraints

In chapter 2, we discussed deterministic trajectory optimization routine. In this section, we refor-
mulate this routine to accommodate state uncertainty. We express collision avoidance constraint as
desired measure of overlap between Gaussian populations of drone and obstacle. The remodeling will
use theory of overlapping of Gaussians described in section 3.3. Since there is an uncertainty in drone’s
position, we will redefine Jterminal as below,

Jterminal = (DtN −Gf )(Σ
d
tN

)−1(DtN −Gf )
T (4.1a)

Equation 4.1a is mahalanobis distance[25], which characterizes the number of standard deviations a
point is away from mean of a distribution. Equation 4.1a will minimize number of standard deviations
goal point is away from the mean position of the drone at the end of the trajectory.

Here, we are assuming no uncertainty in the actuation. Further, we assume that belief propagation
for drone and obstacles for a given time-horizon is known. Hence, minimization of overlap between
drone and obstacle populations can be thought of as minimum number of standard deviations(cmin) a
drone should deviate from its path to ensure collision free trajectory. Let that number be denoted by cti

at time instance ti. While planning the trajectory, our constraint is to ensure that the minimum value
of cti for i ∈ {1,2...,N} is larger than certain threshold cmin. Which is analogous to saying that the
overlap between drone and obstacle at any time instant should not be greater than overlap threshold
Υmax.
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4.1.1 Reformulation of collision avoidance constraint

Our goal is to reach Gf from the start position X0 in N time-steps, each time-step of duration τ .
Here, our objective is to find optimal set of velocity commands Vti = (vx

ti
, vy

ti
, vz

ti
) which would satisfy

our constraints as well as minimize the cost. We will be using the process model of the drone explained
in chapter 2.

Let the overlap between drone and obstacle j at time instance ti be Υj
ti

, which is dictated by overlap
parameter λj

ti
. then,

Dti = f (Vt1 ,Vt2 ,Vt3 ....Vti) (4.2a)

Υj
ti

= g1 (Dti ,Σ
d
ti
, Ôj

ti
,Σ

oj

ti
, λj

ti
) (4.2b)

In equation 4.2b, overlap is expressed in terms of drone/obstacle positions and their correspond-
ing uncertainties. Drone position is expressed in terms of control commands(Vt1 ,Vt2 , ...Vti) as ex-
plained in motion model(equation 2.8). Hence, equation 4.2b is completely parameterized by control
commands(Vt1 ,Vt2 , ...Vti) and overlap parameter(λj

ti
). We can express condition to admissible pro-

cedure(equation 4.3a) in terms of control and overlap parameter,

(ηd
ti

)2 − (η
oj

ti
)2 = g2 (Dti ,Σ

d
ti
, Ôj

ti
,Σ

oj

ti
, λj

ti
)

(ηd
ti

)2 − (η
oj

ti
)2 = f2 (λjti ,Vt1 ,Vt2 ,Vt3 ...Vti)

}
(4.3a)

Υj
ti

= 2Pdti(η
d
ti

) = 2Pojti (η
oj

ti
) = f1 (λjti ,Vt1 ,Vt2 ,Vt3 ...Vti) (4.3b)

Equation 4.3a-4.3b are in accordance with equation 3.12a-3.13a, equation 4.3a models necessary
condition for the procedure to be admissible in nature.

The maximum allowed overlap Υmax is uniquely related to minimum number of standard deviations
(cmin), a drone should deviate in order to avoid obstacle with certain minimum confidence. cmin is
expressed in terms of confidence intervals directly. So for a particular confidence interval, cmin will
have a unique scalar value. Hence, a unique Υmax value as explained in section 3.3. So, a chance
constraint in terms of overlap between two Gaussians can be expressed as below.

Cobsj (.) =

Υj
ti

= f lin1 (λj
ti
,Vti) ≤ Υmax

(ηd
ti

)2 − (η
oj

ti
)2 = f lin2 (λjti ,Vti) = 0

(4.4a)

Both sub-constraints of collision avoidance constraint(equation 4.4a) are parameterized by velocity
controls(Vt1 ,Vt2 , ...Vti) and overlap parameter(λj

ti
). Υj

ti
≤ Υmax ensures that the drone is avoid-

ing the obstacle with certain minimum confidence. (ηd
ti

)2 − (η
oj

ti
)2 = 0 ensures that the overlap

parameter(λj
ti

) we get through SCP routine is optimal and satisfies condition to admissible procedure.
Closed form expressions for f1 (.) and f2 (.) are functions of optimization variables(Vti , λ

j
ti

) which are
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computed using mathematica[11]. They are non-linear in our variables of interest. We linearize them as
shown below,

f lin1 () = f̄1 () +
i∑

k=1

OVtk
(Vtk − V̄tk) + O

λjti
(λj

ti
− λ̄j

ti
) (4.5a)

f lin2 () = f̄2 () +

i∑
k=1

OVtk
(Vtk − V̄tk) + O

λjti
(λj

ti
− λ̄j

ti
) (4.5b)

f lin1 (.) and f lin2 (.) are affine approximations of f1 (.) and f2 (.). OVtk
and O

λjti
are partial derivatives

with respect to Vtk and λj
ti

respectively.

4.1.2 Trajectory optimization algorithm

We outline complete trajectory optimization algorithm built on above scheme. Let the trajectory
of obstacle j be denoted by Ωj = {Oj

t1
,Oj

t2
,Oj

t3
, ...Oj

tN
} and trajectory of all P obstacles be ΠP

= {Ω1 ,Ω2 ,Ω3 , ...ΩP}. Let overlap parameters between obstacle j and drone for N timesteps be
Λj = {λj

t1
, λj

t2
...λj

tN
}. Algorithm 1 outlines proposed SCP routine where we jointly optimize over

control(Vti) and overlap parameter(λj
ti

) space.

Algorithm 2 ProbabilisticTrajOpt(Υmax, ΠP, Σdrone, Σobstacle)

1: Initialization: Guess for Λ̄k
j (t), V̄k(t), iteration counter k = 0

2: D̄k (t) = InitializeTrajectory(V̄k (t))

3: while | Jk+1 − Jk | ≥ δ do

Vk (t),Λk
j (t) = argmin Jk

subject to

Xti+1 = f (Xti ,Vti)

Vmin ≤ Vti ≤ Vmax

amin ≤ (
Vti+1 −Vti

τ
) ≤ amax

Cobsj (Λ̄
k
j (t), V̄k (t))≤ 0, ∀ j = {1, 2, 3, ... P}

4: Λ̄k
j (t)← Λk

j (t)

5: V̄k (t)← Vk (t)

6: k ← k + 1

7: end while
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4.2 Evaluation of trajectory optimization

In this section, we evaluate proposed trajectory optimization routine for single obstacle-drone config-
uration. The start position of the drone is X0 = [0,0,0] and it has to reach destination Gf = [10,0,0]

in N = 20 timesteps of duration τ = 1.0 seconds. Obstacle starts from O1
t1 = [10,0,0] to reach

O1
tN

= [0,0,0]. Our objective is to find an optimal trajectory where cmin = 60% confidence contour
of the drone avoids 60% confidence contour of the obstacle. Meaning, during the entire trajectory,
60% confidence contour of drone should not penetrate 60% confidence contour of obstacle. When two
3 dimension Gaussians touch each other at 60% confidence contours, the area of overlap is 0.0861.
Overlap between drone and obstacle populations at any point of time during the trajectory can not be
more than Υmax = 0.0861 . We use algorithm 2 to get optimal trajectory satisfying the constraints.

(a)
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(b) (c)

Figure 4.1: In this figure, we show evaluation of trajectory optimization routine proposed in Algorithm

2. In figure 4.1a, we see trajectory of drone and obstacle for a simple scenario. Figure 4.1b shows

confidence contour avoidance profile for this case. We see that as drone and Obstacle keep coming

closer, their confidence contours corresponding to confidence = 60% avoid each-other. 4.1c shows how

Mahalanobis distance[25] between goal point and drone reduces over time.

4.3 Comparison with Bounding Box method

In this section, we compare our algorithm with a bounding box approach. In bounding box approach,
we find largest eigen value of our co-variance, which correspond to largest variance, and approximate
a circle of that radius. In circular approximation, we find radius of approximated circle based on con-
fidence of avoidance and largest eigenvalue of the co-variance. If largest eigenvalue for obstacle j
co-variance at time ti is e

oj

ti
and Mahalanobis distance for confidence of avoidance is MDojti , and if

largest eigenvalue for drone co-variance at time ti is ed
ti

and Mahalanobis distance for confidence of
avoidance isMDdti , then corresponding radius of obstacle and drone can be expressed as below,

R
′
oj

=
√
MDojti e

oj

ti
(4.6a)

R
′
drone =

√
MDdtie

d
ti

(4.6b)

With these radius values, we construct a deterministic optimization routine as explained in chapter
2, and compare it with our overlap based probabilistic optimization framework for a following case.
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Our drone starts at [0,0] and goal is to reach [10,0] in 20 seconds. While obstacle is traveling in an-
tipodal direction from [10,0] to [0,0]. The position uncertainties considered are Σdrone = Σobs =(

0.03 0 0
0 0.01 0
0 0 0.01

)

(a)

(b)

Figure 4.2: Figure 4.2a shows results with bounding box approach. For 80% confidence of avoidance,

circular approximated radius turn out to be R
′
oj

= R
′
drone = 1.2072. While figure 4.2b shows result

through our method. It is evidently visible that there is more deviation in trajectory in case of bounding

box approach compared to our approach. Hence, bounding box approach may not be the most optimal

way to solve the problem.
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Chapter 5

Results and discussions

We construct a model predictive control framework by using proposed probabilistic trajectory opti-
mization routine as a base. Our proposal has been extensively evaluated for wide range of safety critical
configurations. We show two such challenging situations to evaluate our proposal. We use Matlab
based CVX[10] to prototype many of these scenarios. For a faster implementation, we use python based
CVXOPT[1]. The simulations are carried out using Rotors[6], which is a micro aerial vehicle sim-
ulation framework built in gazebo[14]. The proposed approach is implemented in a model predictive
control framework(MPC) along the lines of [20], [20] uses the idea of a receding horizon as the basis for
building an MPC. We plan for a finite horizon and upto some intermediate way-point along the original
trajectory. Intermediate way-points are placed at regular intervals to avoid extreme deviations in drone
trajectory. In this section, we show results for two interesting applications.

5.1 Antipodal configuration

In this experiment, we show 3 obstacles attacking drone in an antipodal configuration. The drone
detects obstacles at sensing range of Sr = 10 meters. The acceleration bounds amin,amax are −0.5

m/s2, 0.5 m/s2 respectively. Value of Vmin and Vmax are 0 m/s , 3.0 m/s respectively. We
keep a planning horizon of 28 steps, each of duration τ = 0.3 seconds. We keep re-planning at every
0.3 seconds. Radius of drone/obstacles is taken as 0.5 meters. For this configuration, we consider
cmin = 90%. In other words, our objective is to ensure that at least 90% confidence contours of drone
and obstacles do not penetrate each other during entire journey of the drone. As soon as it detects the
obstacles, it starts deviating from its trajectory and 90% confidence contour of the drone avoids 90%

confidence contours of all 3 obstacles. The position uncertainties considered are Σdrone = Σobs1 =

Σobs2 = Σobs3 =

(
0.02 0 0
0 0.02 0
0 0 0.02

)
. With this configuration, we show comprehensive results in figure

5.1. Sequence of images in figure 5.1 shows some snaps during obstacle avoidance maneuver, the
navigation was successful and the lower bound was respected throughout the trajectory. As shown in
confidence plots in figure 5.1b-5.1d-5.1f, the maximum penetration for violet and dark green obstacles
was at 5%, while for blue obstacle, it was 2%.

29



(a) (b)

(c) (d)

(e) (f)

30



(g)

Figure 5.1: Antipodal setting: The drone adopts a maneuver relating to a particular confidence of safety

when it encounters obstacles in its sensing range. This is clearly shown in figure 5.1a-5.1c-5.1e. Figure

5.1a, shows the situation, where the drone encounters obstacles, withing its sensor range and starts taking

appropriate control actions. Figure 5.1c, highlights the resultant maneuver, that the drone adopts to

achieve a targeted level of safety. Figure 5.1e shows the goal reaching ability of the drone, after avoiding

obstacles. The lighter ellipsoidal shades in these figures represent the uncertainty region encompassing

the mean positions of the drone and obstacles(filled with darker shades). Figures 5.1b-5.1d-5.1c, shows

the plots of confidence intervals for the collision avoidance maneuvers the that drone adopted in figures

5.1a-5.1c-5.1e. Our constraint was to ensure that 90% confidence contours of drone avoids at least

90% confidence contours of all obstacles. From figures 5.1b-5.1d-5.1c, we can observe that maximum

overlap between the drone and any obstacle is 5%,, i.e. only the 95% confidence contours grace each-

other. Figure 5.1g shows complete trajectory of the drone as it has avoided and reached the obstacle.
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5.2 Obstacle avoidance in constrained corridor

We show another interesting application of our proposal. If drone and obstacle are entering in a
constrained corridor, apart from putting lower bound cmin, we can also put upper bound(cmax) in such
tight spaces. Putting upper bound will ensure that drone is not slowing down too much. Having upper
bound constraint, Sub-constraint 1 of equation 4.4a will take the following form,

Υmin ≤ Υj
ti
≤ Υmax (5.1)

Through demonstration, we advocate the usage of upper bound constraint in tight spaces. Upper
bound ensures that drone is within certain range of obstacle, which will reduce deviation in drone
trajectory, thus ensuring no collision with surrounding walls. We consider a case where drone and
obstacle are entering in a constrained corridor at same time. In this case, we take cmin = 30% and
cmax = 60%. In other words at least 30% confidence contours of drone and obstacle can not penetrate
into each other, while 60% confidence contours can’t have 0 overlap at any time instant during the
trajectory. Our planning horizon is of 40 timesteps, each of duration τ = 0.3 seconds. We consider
following uncertainty matrices,

Σdrone =

0.02 0.01 0

0.01 0.02 0

0 0 0.02

 (5.2a)

Σobs =

0.03 0.02 0

0.02 0.03 0

0 0 0.02

 (5.2b)

Before solving an MPC, these matrices are scaled up to incorporate radius of drone and obstacle.
We consider non-isotropic uncertainty for this demonstration and show efficacy of our algorithm under
tight spaces. In figure 5.2, We show snippets of various time-instances. The walls are modeled as
stationary obstacles. For example, in figure 5.2a, drone and obstacle are entering in the corridor. Both
upper bound and lower bound constraints are enforced and we can see that drone is able to maintain
sufficient distance from the wall as well as the obstacle while respecting the constraints. An absence of
upper-bound constraint results in slowing down of the drone and we encounter a longer time for flight
completion. Having upper bound favorably changes the velocity profile to complete trajectory in faster
time. This shows usefulness of our proposal in tightly bounded spaces. We can use such modeling in
object tracking/following. In figure 5.2g, we show confidence plot for entire trajectory.
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Figure 5.2: Constrained corridor setting: In figure 5.2a, confidence contour for 30% and 60% are shown

for both, drone and obstacle. Drone senses presence of obstacle at time t = 4sec. As drone enters in

corridor, lower and upper bound constraints are enforced. Which ensures minimum risk behavior. For

example, in figure 5.2c- 5.2e, we can see overlap between drone and obstacle shaded in green for 60%

confidence contours. While, 30% confidence contours which correspond to lower bound never penetrate

each other as visible in figure 5.2c-5.2e. Figure 5.2d shows top view of figure 5.2c in gazebo. Under such

tightly bounded spaces, we observe that drone is able to safely maneuver constraints without crashing

into walls. Trajectory deviation shown in 5.2e depicts that drone can maneuver in a way that would

stay reasonably behind the obstacles while satisfying both lower and upper bound constraints. Figures

5.2b-5.2d-5.2f are gazebo results of figures 5.2a-5.2c-5.2e in bird’s eye view. Figure 5.2g shows how

confidence contour of touch(cti) is changing over time for setting considered in section 5.2. Throughout

the trajectory, our drone is able to satisfy both, lower and upper-bound constraints. Initial rise in figure

5.2g suggests that drone was slowing down first, and then it gradually accelerated to satisfy upper-bound

constraint.
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Chapter 6

Conclusions

In this thesis, a novel approach to dynamic collision avoidance under uncertainty in state of robot
and obstacles, modeled using Gaussian distribution, has been proposed. It has been derived by using
area of overlap of the Gaussian distributions, which has unique characterization for a given confidence
contour. The proposed algorithm, integrated with Linear MPC, jointly optimizes over velocity profile
and overlap parameter space to generate a navigation path in constrained dynamic environment. Here,
a non-linear chance constraint was modeled and closed form characterization was provided through
theory of overlapping Gaussians. The thesis puts forward results for two safety critical configurations:
Antipodal configuration and Constrained Corridor setting. The findings of this study have been vali-
dated for various other possible scenarios using numerical simulations. In future, we intend to model
actuation dynamics into overlap of Gaussian framework and attempt to solve for challenging scenarios
with unbounded covariances. Apart from that, this can be extended to multi=agent trajectory planning
problem too. A probabilistic multi-agent motion planning routine can be formulated using theory of
overlapping Gaussians.
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Related videos

• http://robotics.iiit.ac.in/people/dhaivat.bhatt/CDC_video/index.html
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