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Abstract— Long-short term memory networks(LSTM) mod-
els have shown considerable performance on variety of prob-
lems dealing with sequential data. In this paper, we pro-
pose a variant of Long-Term Recurrent Convolutional Net-
work(LRCN) to detect road intersection. We call this network
as IntersectNet. We pose road intersection detection as binary
classification task over sequence of frames. The model combines
deep hierarchical visual feature extractor with recurrent se-
quence model. The model is end to end trainable with capability
of capturing the temporal dynamics of the system. We exploit
this capability to identify road intersection in a sequence of
temporally consistent images. The model has been rigorously
trained and tested on various different datasets. We think that
our findings could be useful to model behavior of autonomous
agent in the real-world.

I. INTRODUCTION

The last few years have confirmed the long-touted claim
that autonomous navigation systems will be an integral
part of the future of our daily transportation. As efforts
on autonomous navigation proliferate across the world, an
important problem in this domain is the reliable detection
of road intersections. For a robust and complete outdoor
exploration, it is essential to detect road intersections as
one of the key landmarks. This can help in route planning
of the autonomous agent as well as in localization. While
it’s relatively simpler to localize robots in static indoor
environments, where measurements can give us a good sense
of an agent’s location, this problem can be harder in the
outdoor environment.

Another motivation to pursue this problem is towards
safe navigation of a driverless vehicle. Traffic junctions are
recognized as one of the leading causes for road accidents.
According to the report[1], 50% of collisions occur at road
junctions. Traffic intersections have a high degree of unpre-
dictable behavior in the dynamic world. When modeling the
behavior of the autonomous agent, it is essential to enable
the agent to behave more cautiously near intersections, which
motivates the problem in this work too.

A key enabler of safety in manually driven vehicles is the
ability to detect the onset of an intersection in the near future.
However, providing such a capability to an autonomous
agent requires modeling road dynamics such as broadening
or forking. This necessitates an approach that can position
this problem as one of spatio-temporal understanding, where
the spatial configuration of the current scene, along with
the temporal changes in the scene over a past window, are
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considered together to label a scene as an intersection. While
there has been earlier work (discussed in Section II), all
the prior efforts use Lidar or other sensors to achieve this
objective. In this work, we propose to detect intersections
using only monocular video streams (which has not been
done before).

Following the success of deep learning in recent years, we
adopt deep learning for the intersection detection problem.
We propose the use of a model that brings together spatial
understanding (using Convolutional Neural Networks, CNN)
and temporal modeling (using Recurrent Neural Networks,
RNN) in this work. In particular, we use a variant of the
Long-Term Recurrent Convolutional Networks (LRCN) [2]
to tackle the problem of detection of road intersections,
and pose this problem as a recognition problem with two
classes: intersection and non-intersection videos (we also
demonstrate how this model can be extended to further
classify intersections as four-road crossing or T-junctions).
We call our network the IntersectNet. By using the LRCN
approach to model the problem, we advocate the claim
that visual features learned by CNN with writable memory
support can model the internal representation and dynamics
of video streams, as relevant to detection of traffic intersec-
tions. Due to the ‘end-to-end’ training capability, this model
can update its parameters of the visual feature extractor as
well as the parameters of the memory module together. We
extensively test the model on video sequence datasets that
contain intersections, and show the practical usefulness of
this approach. We also show scenarios where the model
is trained on one dataset and tested on another to test its
generalizability.

The paper contributes in the following ways.

• It provides a solution to the sparsely studied yet a
pertinent problem of intersection detection based on
monocular camera as the sensing modality. This is in
contrast with previous approaches that have primarily
used laser range finders and point cloud features.

• This is also the first such method to use a very current
architecture combining CNN with LSTM in the form of
LRCN for intersection detection.

• By reporting performance gain vis a vis single frame
CNN approaches it establishes the role of the temporal
dimension in intersection/junction detection.

• Significantly accurate classification across a variety of
datasets and across varied geography showcases the
efficacy of the proposed method.

The remainder of this paper is organized as follows. Sec-



tion II discusses earlier work that have attempted intersection
detection using other sensors, and motivates this work. Sec-
tion III describes the proposed IntersectNet in detail. Section
IV presents the results on popular road video datasets, and
also compares this against using a spatial model (CNN)
without considering the temporal dependencies. Section V
presents additional results of classifying intersections further,
as well as generalization results; and Section VI concludes
with paper with pointers to future work directions.

II. RELATED WORK

There have been a few attempts to detect road intersections
over the last few years, although with other sensing modali-
ties. Mukhija et al. [3] combined camera data with lidar data
for intersection detection. Techniques from image processing
and computational geometry were used to extract a skeleton
of the navigable region for intersection detection. Habermann
et al. [4] extracted features from 3D point clouds collected
using laser range finders. The features are first classified
using conventional classifiers like support vector machines,
adaptive boosting or artificial neural networks. Structured
classifiers are then used to incorporate contextual information
from neighboring frames for refined classification. Nie et
al. [5] proposed another camera and lidar fusion approach
for road intersection detection, where both the sensing
modalities are together used to extract lane information, and
intersection branches are then detected from the fusion of
lane information.

Most of the existing algorithms are geometry-based and
may not generalize well to varied intersections that an au-
tonomous vehicle may encounter on its path. On the contrary,
a data-driven approach, such as the proposed approach,
is not limited in this sense. Considering the increasing
access to large amounts of video data, data-driven methods
for such problems may provide a viable and generalizable
solution. Further, Lidar is expensive, and it may not be
easy for all vehicles of the future to have such a system.
Having an intersection detection system based on cameras
alone is necessary, which we focus on in this work. Also,
Lidar cannot be used to detect intersections from a longer
distance as the density of the point cloud decreases with
increasing distance from the sensor. An alternate solution to
this problem can be proposed by combining GPS information
with aerial maps to localize a vehicle near an intersection.
However, the imprecision of GPS data and the reliance of
this approach on an external source limits such an approach
for practical use.

III. METHODOLOGY

Figure 1 presents the overall architecture of the proposed
IntersectNet that brings together a Convolutional Neural
Network (CNN) that spatially models the scene, and a Long
Short-Term Memory (LSTM) network (which is an RNN
variant) that models temporal relationships.

A. Convolutional Neural Network
Recent success of models based on Convolutional Neural

Networks (CNN) in tasks ranging from object classification

[6] to semantic segmentation [7], [8] suggests that composing
highly non-linear layers in a sequential fashion acts as a very
powerful visual feature extractor[9]. In this paper, we use
CNN as a feature extractor which can be further utilized by
memory based models for classification of road intersection.
(Specific details of the network architecture are discussed
later in this section.)

B. Long Short-Term Memory Network

Recurrent Neural Networks (RNNs) are designed with an
idea of incorporating a feedback loop in their architecture.
The problem with a traditional RNN is that they can not
infer from long-term dependencies. As investigated in [10],
assuming the network accepts a window of inputs ranging
from time points, say, t − τ to t, the gradient flows from
the output layer at time t all the way until the units at time
t−τ during backpropagation. However, gradient values tend
to vanish after a few time steps during the backpropagation,
creating the ‘vanishing gradient’ problem. This results in tiny
to almost no change of weights for distant units, nullifying
the impact of long-term dependencies on the output at time t.
In order to tackle this problem, Hochreiter and Schmidhuber
came up with the idea of Long Short-Term Memory networks
(LSTMs), which are a special kind of RNNs with the
capability to carry long-term dependencies [11][12]. Figure 2
shows a single LSTM unit. An LSTM contains a cell-state,
Ct, which carries information from previous units, forgets
unnecessary information and incorporates new information
at each step (each of which is implemented as a layer
of neurons with sigmoid activation functions, which act as
gating functions). Information can travel easily along cell-
state without being a subject of significant modification.

Here are the update equations of LSTM module,

it = σ(Wxixt +Whiht1 + bi)

ft = σ(Wxfxt +Whfht1 + bf )

ot = σ(Wxoxt +Whoht1 + bo)

gt = tanh(Wxcxt +Whcht1 + bc)

ct = ft �ct−1 + it �gt

ht = ot �tanh(ct)

Here, σ(x) is a sigmoid unit. Each sigmoid unit output a
vector with values between [0, 1]. ft is a forget gate which
removes unnecessary information from the previous cell state
(ct−1). Input gate it along with gt add new information
obtained at time t to the cell state. The updated cell state(ct)
and output gate (ot) yield ht. Here, �indicates element-wise
dot product.

C. Long-Term Recurrent Convolutional Networks (LRCN)

Long-Term Recurrent Convolutional Networks (LRCN)
[2] provides a combination of CNNs and LSTMs, and we
use a variant of this architecture in this work. In its most
basic form, the LRCN has a visual feature extractor that
projects input space dimension to the fixed length feature
representation of dimension V. The fixed length vector
representations are time-invariant and independent. V is then



Fig. 1. Pipeline of the proposed IntersectNet. Each frame goes to a single instance of a CNN. At a time, 16 frames are fed to the network. The CNN
gives rich set of features which are fed to LSTM units tied across time. These LSTM units are connected to a fully-connected layer. The softmax on fully
connected layer gives label probabilities. In general, if T is the length of the input sequence and L is the total number of classes, output will be of size
T × L (16× 2 in our case).

Fig. 2. Basic LSTM unit. Inputs are given by xt, cell state at the previous
time instant is Ct−1, history is ht−1.

fed to a memory network (LSTM) along with the previous
hidden state (which is obtained by running a CNN on
the previous video frame), so as to produce next hidden
state and output. The fusion of the deep hierarchical visual
feature extractor and LSTM network enables end-to-end
optimization of visual and sequential model parameters. The
representation learned by the LSTM is then provided to
a linear prediction layer. The predictions obtained by the
LSTM network on each of the video frames of a given
sequence are then provided to a fusion layer, whose output
finally provides the classification result.

D. Why LRCN?

CNNs have been successfully applied on image recogni-
tion tasks, and it appears that one could use CNNs effectively
on an image from the camera feed to recognize an intersec-
tion. However, we claim in this work that reliable detection
of road intersections requires a spatiotemporal understanding,
than just a spatial one. Road intersections could have various
salient characteristics such as a human crossing the road,
a car taking a turn, or just broadening of the road. These

features can be captured over a video sequence (than just a
single frame), thus necessitating a spatio-temporal model. We
compare the performance of the LRCN model with single-
frame CNN model for individual classes in Section IV, and
show that the LRCN model outperforms the predictions from
the single frame model by significant margin.

E. IntersectNet: Training and Network Parameters

This problem was approached using a variant of the
LRCN, which is obtained by combining a CNN with an
LSTM network[2]. This is an end-to-end trainable network.
The CNN base of the network is a minor variant of AlexNet
[6]. Since CNNs need very large amounts of data to be
trained effectively (which we do not have here), we used
the AlexNet CNN model trained on 1.2 million Imagnet
LSVRC-2012 [13] classification dataset, which is a subset
of ImageNet [14] dataset as our base, and finetuned this
model on the datasets for road intersections. The weight
initialization from a pre-trained network enables faster train-
ing with minimal over-fitting. Two variants of Long-term
Recurrent convolutional networks(LRCN) were proposed in
[2]. In IntersectNet, we use the first variant where the LSTM
modules are placed immediately after fc layer of the CNN
modules (as in Figure 1).

The training part has 2000 epochs, and takes roughly 6
hours for Oxford dataset. While finetuning takes 1.4 hours.
The training and testing had been carried out on Nvidia
Titan X GPU. Caffe[15] was used to program the proposed
architecture.

The proposed IntersectNet model is trained using Stochas-
tic Gradient Descent(SGD). During backpropagation, gradi-
ents of the objective function are computed with respect to
both, visual (CNN) as well as the temporal (LSTM) pa-
rameters. The LRCN network faces the ‘exploding gradient’
problem, which is one of the key issues with LSTMs, where



the product of the gradients in each layer can explode when
each value is relatively high. Pascanu et al. [16] proposed
norm clipping to deal with this exploding gradient issue. In
our work, we clip a gradient down to the value of 5.

Each input sequence to IntersectNet contains a video
sequence of 16 contiguous frames. Each frame is an RGB
image with size 240x320x3. A stride of 8 is used in the
CNN. Each frame is further cropped to 227x227x3. Each
CNN instance gives an output feature vector of size 1x4096.
The features from all instances of CNN are then fed as
input to the LSTM network. The size of input to the LSTM
network is hence 16x4096. The output of each LSTM cell
is then passed through a fully-connected layer and, finally,
a soft-max layer which makes the output prediction. In the
end, we introduce a fusion layer that combines outputs of all
LSTM cells to provide the final prediction (in this work, we
simply use average-pooling in the fusion layer).

IV. EXPERIMENTAL RESULTS

A. Dataset Description

Considering that there is no explicit dataset publicly
available for evaluating the performance of an intersection
detection method, we extracted 110 intersection sequences
and 200 non-intersection sequences from the Oxford Robot-
Car dataset[17]. Each intersection sequence is temporally
contiguous and consistent, and contains a road intersection.
We define an intersection sequence as starting from a location
where the intersection is fairly visible and reaching the
junction.In addition, we also obtained intersection sequences
from the popular Lara [18] traffic-light detection dataset. We
extracted 22 intersection sequences and 40 non-intersection
sequences from this dataset with the same defnition of an
intersection sequence as before. Non-intersection sequences
essentially have a road without any junction. Each Oxford
sequence has 40− 60 frames, while the Lara sequences have
number of frames varying between 20− 60. The Lara[18]
dataset was collected with a speed < 30mph and 25 frames
per second.

B. Results

In this paper we show results to verify the superior
performance of LSTM based models. We first trained adapted
version of LRCN model on Lara dataset and carried out
testing on Oxford dataset. Similarly the model trained on
Oxford sequences was tested on Lara sequences. We also
carried out testing on joint subset of both the Lara and
Oxford datasets. The prediction accuracy are summarized in
Table I

ID1 ID2 ID3 ID4 ID5
Accuracy 78.25% 82.07% 94.14% 92.16% 72.052%

S.D. 1.01 2.71 2.7836 1.46 2.13

TABLE I

C. Dataset augmentation

As a part of dataset preprocessing, We flipped all the im-
ages of all the sequences around vertical axis passing through
the center of the image. We subsequently added Gaussian
noise with 0 mean and [0.01,0.1,0.01] as variance to R,
G, B channels respectively. The noise was added to both
original as well as flipped image. This way, we get 4 versions
of same sequence with minor variations.

After data augmentation, we had 440 intersection and
800 non-intersection sequences from Oxford dataset, 88
intersection and 160 non-intersection sequences from Lara
dataset.

D. Single-Frame vs LRCN

In this section, we compare the performance of LSTM
based models with conventional single frame convolutional
models. For single frame model, N individual frames are
classified independently by CNN and final classification is
done by averaging scores across all video frames. Table II
reports the accuracy of performance. As evident from the
numbers, IntersectNet outperforms the conventional single
frame CNN network by a margin of nearly 5.5% when
trained on Lara dataset and roughly a margin of 2.5% when
trained on Oxford datasets.

Trained on Lara Trained on Oxford
Single Frame 72.72% 69.58%

LRCN 78.25% 72.05%

TABLE II

ID1 : IntersectNet trained on Lara sequences and tested on
Oxford sequences
ID2 : IntersectNet trained on Lara sequences and tested on
Lara and oxford sequences
ID3 : IntersectNet trained on Oxford, finetuned on Lara
sequences and tested on Lara
ID4 : IntersectNet trained on Lara, finetuned on Oxford
sequences and tested on Oxford
ID5 : IntersectNet trained on Oxford and tested on different
Lara sequences
S.D. : Standard Deviation

V. DISCUSSION AND MORE RESULTS

A. 3 class classification

Apart from detecting the potential intersections, it is cru-
cial for the autonomous vehicle to categorize the intersection
based on its geometry. We extend the problem of binary
classification of road intersection to 3-class classification
problem. We classify the road geometry as into one of
following classes:

1) Non Intersection
2) T-junction
3) Cross junction
At road junctions, behavior of autonomous agents should

change based on busyness of the road. The agent should
be equipped with ability to adapt itself with dynamic en-
vironment. A small junction of T shape might not be as
dangerous as multiple roads meeting at a common junction.



(a) Classified as Intersection (b) Classified as Non-Intersection (c) Classified as Intersection

(d) Classified as Intersection (e) Classified as Intersection (f) Classified as Non-Intersection

(g) Classified as Intersection (h) Classified as Non-Intersection (i) Classified as Intersection

(j) Classified as Intersection (k) Classified as Non-Intersection (l) Classified as Intersection

Fig. 3. Qualitative results: Our trained model was tested on various sequences from different datasets, spread over different continents.

It is essential to enable field agent to understand complexity
of the surrounding environment.

If the vehicle has only two degrees of freedom to move,
it can either turn on left/right or could continue on the same
path. We are defining such junctions as T shaped junction.
In other words, these junctions have only single turn.

If the vehicle has multiple degrees of freedom to move,
we categorize such intersections as Cross(+) junction. Any
junction with multiple roads meeting will be classified as
cross junction. The autonomous agent needs to be more
careful near such a junction, as there are higher chances of
road accidents because of its complex nature.

For this proposal, we used Oxford dataset for training

and testing. There were 60 Cross junction sequences, 47
(T ) junction sequences and 200 non-intersection sequences.
We randomly sampled non-overlapping set of sequences for
training and test set. The sampling was carried out for 10
times. The training was carried out for 10 times.Table III
summarizes the average accuracy.

3-Class Classification
Accuracy 91.7208%

S.D. 2.1772

TABLE III



B. Finetuning and Generalization
In this section, we investigate the ability of network to

adapt on new and relatively smaller dataset. In table I,
we summarized the performance of IntersectNet trained on
Lara sequences. The Lara dataset was extensively tested on
Oxford sequences. In this section, our key idea is to adapt the
Lara trained model using a small subset of Oxford dataset.
The Oxford and Lara datasets have really different temporal
features. Lara dataset has lower frame rate, more vehicle
speed and significantly different surrounding as compared
to Oxford.We assess on how we can effectively transfer
learned model of Lara dataset to Oxford. With as less as
150 Oxford sequences, we finetuned a model trained on Lara
and tested on 700 Oxford sequences. Table IV compares the
performance of IntersectNet on Oxford dataset before(ID1)
and after(ID4) finetuning. As evident from the figures, the
model show significant boost in accuracy after finetuning. We
demonstrate that the network quickly adapts new sequential
features and generalizes for a larger dataset.

ID1 ID4
Accuracy 78.25 % 92.16 %
Precision 0.7565 0.9364

Recall 0.8593 0.9581
F1 measure 0.8046 0.9471

TABLE IV

C. Qualitative Results
Figure 3 shows the qualitative results for the intersection

recognition. Our proposed method makes fairly well predic-
tions over diverse road geometries under various illumination
conditions. The top row of 3 shows the classification over
sequences from Oxford dataset. Second row shows results
on Lara dataset. Third row shows accurate classification
on sequences collected from a youtube videos. In the last
row, we show results of our model evaluated on sequences
collected in Indian road conditions. Even if the road in front
of the vehicle is partially occluded, as in Figure 3(c), we are
able to make correct predictions by learning the temporal
dynamics of the environment.

VI. CONCLUSIONS
This paper presents a robust method for road intersec-

tion detection. The temporal dimension to the intersection
problem gets vividly captured through superior performance
of the LRCN architecture vis a vis a single frame CNN
classifier. Our approach gives efficient and extensive results
on a variety of road junctions. As self driving cars get close
to reality, the ability to detect a diverse category of road
junctions becomes inevitable. The scalability and generaliz-
ability of the proposed architecture makes it competitive for
the intersection detection problem

While we have attempted to detect an intersection reliably
in this work, we believe that the proposed approach can also
be used to detect various stages of approaching an intersec-
tion and leaving an intersection, which we will attempt in
future work.
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