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Probabilistic obstacle avoidance and object following: An overlap of
Gaussians approach

Dhaivat Bhatt1∗ Akash Garg2∗ Bharath Gopalakrishnan1 K. Madhava Krishna1

Abstract— Autonomous navigation and obstacle avoidance
are core capabilities that enable robots to execute tasks in the
real world. We propose a new approach to collision avoidance
that accounts for uncertainty in the states of the agent and
the obstacles. We first demonstrate that measures of entropy—
used in current approaches for uncertainty-aware obstacle
avoidance—are an inappropriate design choice. We then pro-
pose an algorithm that solves an optimal control sequence with
a guaranteed risk bound, using a measure of overlap between
the two distributions that represent the state of the robot and
the obstacle, respectively. Furthermore, we provide closed form
expressions that can characterize the overlap as a function
of the control input. The proposed approach enables model-
predictive control framework to generate bounded-confidence
control commands. An extensive set of simulations have been
conducted in various constrained environments in order to
demonstrate the efficacy of the proposed approach over the
prior art. We demonstrate the usefulness of the proposed
scheme under tight spaces where computing risk-sensitive
control maneuvers is vital. We also show how this framework
generalizes to other problems, such as object-following.

I. INTRODUCTION
Autonomous robots are required to navigate between a set

of defined locations while avoiding any other agent present
on its predicted path. However, uncertainty arising in the
motion of a robot coupled with uncertainty in observation as
well as in environment makes path planning an interesting
job. This problem is necessary to address when autonomous
robots and humans exist in a shared environment like semi-
automated warehouses or mining sites. Strong requirement of
uncertainty aware motion planning necessitates need of new
algorithms that can accurately model various uncertainties
arising in stochastic world of humans. Towards this, we
make an effort to develop a theoretical approach that could
take quantitative measure of uncertainty of robot and other
objects into consideration before making a planning decision.
The environment can be populated with static and dynamic
objects as well as other robots. A great amount of work done
in the past deals with motion planning of the robot from
given start pose to goal pose in the presence of obstacles.
Many of the deterministic obstacle avoidance algorithms
studied in literature, when used for a robot present in an
uncertain environment can lead to substantial degradation in
the desired result and can even make the source robot to
collide into the obstacle, in the worst case. Chance constraint
is one of the efficient way of employing the probability
of constraint violation which is below a user specified
bound. These constraints are combined with other constraints
accounting for the kinematic and dynamic feasibility in form
of actuation constraints of the robot. Our approach generates
smooth trajectories which can be employed on real robots.
This paper has several novel findings and contributes in
following ways,

• This is first such formulation, conditioned on agent and
obstacle uncertainty into an MPC framework through
theory of overlapping Gaussians.

1Affiliated with KCIS, Robotics Research Center, IIIT Hyderabad
2Affiliated with Delhi Technological University
∗Equal contribution
This work is supported by grants made available from Rockwell Collins,

India development center.

Fig. 1. We show result of our probabilistic obstacle avoidance algorithm
in constrained corridor when an obstacle is approaching in antipodal
configuration. Figure 1(a) shows gazebo snapshot of agent positions for two
different time instances. Our objective is to ensure that 70% confidence
contour of agent’s Gaussian is avoiding atleast 70% confidence contour
of obstacle’s Gaussian distribution at any time instance during the entire
trajectory. In figure 1(b), we show how the control maneuvers found
through our algorithm respects user-specified safety bound. For example,
at time t = 19, we can see clear overlap(shaded area) between 99%
confidence contours of the agent and obstacle. However, confidence contours
corresponding to 70% are not being penetrated which can be seen from
figure 1(b), thus, we can clearly see how a user-specified lower bound is
being respected.

• We demonstrate why our modeling is more consistent
and appropriate compared to the widely used Bhat-
tacharya distance, that measures the similarity of two
probability distributions.

• We formulate an optimization framework that solves
for chance constraints using the theory of overlapping
Gaussians.

• We show effective results in various simulation settings
that showcase versatility of the method. Specifically we
show where the distributions are non isotropic, which
is closer to real setting.

Above novelties are arising out of two important problems
we are solving, First one is probabilistic collision avoidance
and second is probabilistic object following. We formally
define them below,

• Probabilistic collision avoidance:
Having knowledge about agent’s initial state,
agent’s belief propagation and the trajectory
of obstacles’ state, the objective is to find an
optimal sequence of control inputs. Such a se-
quence ensures that overlapping area between



any obstacle and agent’s probability distribu-
tions at any time instance is less than prescribed
maximum allowed overlap (Υmax).

• Probabilistic object following:
Having knowledge about agent’s initial state,
agent’s belief propagation and the trajectory of
object’s state, the objective is to find an optimal
sequence of control inputs. Such a sequence
ensures that overlapping area between agent
and object’s probability distributions at any time
instance is between prescribed range of overlap.
This range is characterized by lower and upper
bounds of overlap Υmin,Υmax respectively.

In both problem statements, state is characterized by
a Gaussian distribution. Optimality is defined as a goal
oriented, minimal jerk trajectory planning. Overlap between
two Gaussian distributions is uniquely related to confidence
contours at which they are touching each-other. Providing
confidence contour is more intuitive and safe than providing
raw thresholds of prescribed area of overlap. Hence, input to
our algorithm would be Gaussian confidence contours which
are not allowed to be penetrated, which is a user specified
number.

II. RELATED WORK

This section reviews recent advances in MPC for au-
tonomous navigation. The evident advantage of using MPC
in motion planning and autonomous navigation has been well
demonstrated in ([1],[2], [3], [4]) among many. Formulations
along the lines of [1], [2] do a great job in achieving per-
formance in terms of quality of trajectory, computation time
and novelty of approach. However, they have been developed
for a deterministic setting and hence do not take into consid-
eration the uncertainty in state of the robot and obstacle into
their collision avoidance routine. While MPC formulations
along the lines of [4] does take into consideration the state
uncertainty and demonstrate interesting maneuvers in com-
plex driving scenarios, [4] considers uncertainty only in the
state of the obstacle, and the collision avoidance is modeled
through a Minkowski sum approach. Considering agent’s
uncertainty into Minkowski sum formulation would be very
cumbersome as Minkowski sum between two ellipses is very
complex. [5] takes into consideration the uncertainty of agent
and assumes the obstacle to be static and deterministic, it
models collision as a measure of entropic distance(Similar to
Mahalanobis distance. It is shown in the later section of this
paper that formulating probabilistic collision avoidance as an
entropic distance may not be the most appropriate approach
when uncertainty in the agent and obstacle is considered.
[6] attempts to solve for collision avoidance in a multiagent
scenario under uncertainty. It achieves it through an RRT
framework and a sampling strategy to choose a path corre-
sponding to a desired level of safety confidence. Authors in
[7] solve probabilistic multi-agent motion planning problem
by considering Pianka’s measure([8]) to estimate overlapping
probability. This measurement is similar to entropic distance
which provides measure of similarity for the given Gaus-
sian statistics. Formulating collision avoidance as a chance
constraint is well explored in [9],[10] among the many.
[10] demonstrates an efficient way of solving an intractable
chance constraint through a series of reformulations. These
were built on time scale velocity obstacle concepts [11].

There has been considerable body of work([12], [13],
[14]) exploring obstacle avoidance routine through linear
chance constraints. However, these methods are modeling
linear chance constraints for a static and deterministic ob-
stacles. In [12], convex polyhedral obstacles are encoded by

combination of a set of feasible half-spaces, which is alge-
braically represented by a combination of linear constraints.
Obstacle avoidance problem was solved using disjunctive
linear programming. Here, risk is uniformly distributed to
decompose joint chance constraint. Authors in [12] continue
their work in ([13]) where they proposed a risk allocation
strategy to optimally distribute risk bounds to individual
chance constraints. They additionally prove convexity of
iterative risk allocation method for linear systems in [14]. We
provide a supplementary document where we illustrate why
obstacle avoidance becomes difficult problem to tackle using
linear chance constraints based framework when uncertainty
is involved in obstacle and agent’s states. This method
will fail to provide a probabilistic safety bound due to
intractability arising in collision avoidance constraint because
of obstacle’s uncertainty. We provide a more comprehensive
explanation of this in our supplementary document. We also
provide comparison between our method with bounding box
approach and experimentally demonstrate superiority of our
method, illustrated through diagrams. We suggest reader
to go through the additional document after reading the
paper. It can be found at https://robotics.iiit.ac.
in/people/dhaivat.bhatt/Supplementary.pdf

At this point, it is important to note that we do not ap-
proximate the distribution of chance constraint as a Gaussian
through a first order Taylor series approximation method,
instead we come up with an alternate way of representing
it as an overlap of Gaussians. This way we are differing
from most of the existing approaches. We will conclude
in the subsequent sections that an overlap of Gaussians
method gives rise to maneuvers pertaining to user specified
confidence bounds(confidence of safety). Our approach is
applicable to static as well as dynamic obstacles. Our math-
ematical framework adapts well for 2D and 3D navigation
tasks. With overlap of Gaussians based modeling, we easily
avoid complexity of considering Minkowski sum between
two ellipses and other approaches that model probabilistic
collision avoidance through entropic distances. We further
show its unique application to object following with a simple
extension of collision avoidance framework. Such formula-
tion can be used for human-following robots where there is
uncertainty involved in human pose/motion estimation apart
from error in agent’s state estimation. To the best of author’s
knowledge, this is a first such attempt where non-linear
chance constraints are tackled by representing them using
theory of overlapping Gaussians and not any other entropic
distance.

III. PREREQUISITE

This section describes deterministic MPC framework, for-
mulated along the lines of [1]. A linear motion model
is being considered, and collision avoidance is added as
affine constraints. Entire proposed framework is solved as
a sequential convex programming(SCP) routine[15].

A. Trajectory optimization in a deterministic setting
In a deterministic trajectory optimization setting, our ob-

jective is to reach desired goal in a given amount of time
while ensuring a collision-free trajectory. This problem can
be modeled by considering a set of cost functions and
constraints.

Let the start position of an agent be X0 = (x0, y0, z0). Our
objective is to reach the goal position Gf = (Gxf , Gyf , Gzf )
in N time-steps, each time-step of duration τ . Position of an
agent at any time instant ti is Xti = (xti , yti , zti ), velocity
of an agent at time instant ti is Vti = (vxti , v

y
ti , v

z
ti ). We have

P obstacles in the environment. Their position at time ti is

https://robotics.iiit.ac.in/people/dhaivat.bhatt/Supplementary.pdf
https://robotics.iiit.ac.in/people/dhaivat.bhatt/Supplementary.pdf
https://robotics.iiit.ac.in/people/dhaivat.bhatt/Supplementary.pdf
https://robotics.iiit.ac.in/people/dhaivat.bhatt/Supplementary.pdf


defined as Ojti = (oxjti , oyjti , ozjti ), for ∀ j= {1, 2, 3, ... P}. For
static obstacles, the obstacle locations will be independent
of ti. The agent and obstacles are approximated as circular
objects with radius of the agent being Ragent and radius of
obstacle j is Rj , ∀ j ∈ {1, 2, 3, ... P}.

argmin
Vti

J = Jterminal + Jsmooth (1a)

Xti+1 = f(Xti , Vti) (1b)
Vmin ≤ Vti ≤ Vmax (1c)

amin ≤
Vti+1 − Vti

τ
≤ amax (1d)

Ctiobsj (xti , yti , zti , o
xj
ti
, oyjti , o

zj
ti
, Ragent, Rj) ≤ 0 (1e)

∀ i ∈ {1, 2, 3, ... N} , ∀ j ∈ {1, 2, 3, ... P}
The above set of equations defines the cost function as well

as constraints. Equation 1a describes the objective function.
Jterminal = (xtN −Gx)2 + (ytN −Gy)2 + (ztN −Gz)

2 (2)
The terminal cost forces our system to achieve goal-

state(Gf ) at the end of the trajectory.

Jsmooth =

N − 1∑
i = 2

(
(Vti+1 + Vti−1 − 2Vti)

τ2
)2 (3)

The smoothness cost as described above ensures smooth
trajectory with minimal jerk. It minimizes the jerk which
is modeled as second order finite difference between subse-
quent linear velocities. This term penalizes sudden deviations
in the acceleration profile and ensures smooth velocity tran-
sitions. Equation 1b is the process model of the agent. It
ensures that control variables and states are adhering the
motion model of the agent. Process model of holonomic
agent can be described as below,

Xti = f (X0, Vt1 , Vt2 , ...Vti , τ) = X0 +

i∑
k=1

Vtkτ (4)

Equations 1c-1d, represents constraints modeling actuation
limitations of the agent. The bounds on linear accelera-
tion and velocity ensures that the actuation capabilities of
the agent are not violated. Equation 1e models collision
avoidance constraint between obstacle j and agent. For a
deterministic setting, this can be a simple euclidean distance
constraint as below.

Ctiobsj (.) = −(xti − o
xj
ti

)2 − (yti − o
yj
ti

)2

−(zti − o
zj
ti

)2 + (Rj +Ragent)
2 ≤ 0.

∀ i ∈ {1, 2, 3, ... N} , ∀ j ∈ {1, 2, 3, ... P}
(5)

Above constraint is purely non-linear in agent’s position
i.e. Xti = (xti , yti , zti ), which is our variable of interest.
We linearize it along the lines of [1] and solve the proposed
routine using sequential convex programming. The trajectory
optimization routine is then integrated into a model predictive
control framework.

IV. COLLISION AVOIDANCE UNDER UNCERTAINTY

Robot motions are generally erroneous in nature. There
is always some uncertainty associated with the location of
the agent. Sensing modality also gives inaccurate estimate of
the state of the obstacle/object. Uncertain position estimate
of the obstacle leads to erroneous trajectory estimation. In
such cases, the constraint in equation 1e takes the form of
6
Pr(Ctiobsj (xti , yti , zti , o

xj
ti
, oyjti , o

zj
ti
, Ragent, Rj) ≤ 0) ≥ ∆ (6)

∀ i ∈ {1, 2, 3, ... N} , ∀ j ∈ {1, 2, 3, ... P}
Constraints of the form 6, are generally known as chance

constraints, and in most cases may not have a distribution that
can be computed in closed form. The nature of these chance
constraints also depends on the form of the deterministic con-
straints that they are built on. For example chance constraint
6 arising out of 5 can be expressed as an entropic distance.

Following three sections provides a comprehensive overview
of three important ways to formulate a chance constraint.

A. Theoretical characterization of chance constraint
The chance constraint in 6 can take the form of a trans-

formed distribution of 5 as shown in Equation 7,∫
· · ·
∫
Vj

Pr(Xti , O
j
ti

)dXtidO
j
ti

(7)

Where, Xti = (xti , yti , zti ), position of the agent at time ti.
Under state uncertainty, let Xti ~ N (X̂ti ,Σ

d
ti) and Ojti ~

N (Ôjti ,Σ
oj
ti ) be the Gaussian parameterization of the agent

and obstacle j positions at time ti. Then, Pr(Xti , O
j
ti) takes

the following form,

Pr(Xti , O
j
ti

) ∼ N (

(
X̂ti
Ôjti

)
,

(
Σdti 0
0 Σ

oj
ti

)
) (8)

Here, Pr(.) symbolizes probability of a random variable.
When we substitute equation 8 in equation 7, equation 7
becomes analytically intractable. The closed form solution of
equation 7 doesn’t exist. Authors in [6] attempted to tackle
problem of multi-robot motion planning for differential drive
robots, where they numerically evaluate equation 7 over
the region of interest. The region of interest here would
be set of positions of the agent and obstacles for which
collision occurs. Our objective would be to minimize the
value of equation 7, which means we want to maximize the
probability of collision avoidance. However, one drawback
of this procedure is that characterization of such a region(Vj)
is generally tough.

There has been a lot of work to characterize the entropic
distance between two distributions. One of the commonly
used techniques for entropic distances are chi-square dis-
tances, Bhattacharyya distances among the many. We de-
scribe case of Bhattacharyya distances which is an extension
to Mahalanobis distance.
B. Bhattacharyya distance

Bhattacharyya distance [16] gives measure of similarity
between two continuous/discrete probability distributions. It
attempts to quantify the overlap between two distributions.
For Gaussian distributions, Bhattacharyya distance has well-
defined analytical formula to capture the overlap. For two
multivariate normal distributions, pi = N (µi, Σi) with i =
{1, 2}, Bhattacharyya distance metric is defined as below,

BC(p1, p2) =
1

8
(µ1 − µ2)TΣ−1(µ1 − µ2)+

1

2
ln

det(Σ)√
det(Σ1)det(Σ2)

(9)

Where, Σ = (Σ1+Σ2)/2. This is an extension of Mahalanobis
distance. However, equation 6 can not be completely mod-
eled through similarity/dissimilarity given by such entropic
measure. Because the notion of probability is not complete
in Bhattacharyya metric and particular distance doesn’t have
a unique mapping to certain value in probability space.
In figure 2, we demonstrate that for different Gaussian
distributions with same overlap have different Bhattacharyya
distances. Due to this limitation, entropic distance can’t be
used to model our non-linear chance constraint.

C. Theory of overlapping of Gaussians
The theory of overlap between two Gaussians has been

widely studied in [17], which is built upon [18]. The authors
in [18] attempts to get an optimal linear separator which
minimizes misclassification error when the objective is to
classify the sample as coming from one of the several
populations. We briefly state the theory to get approximate
estimate of component of overlap between two Gaussians.



Fig. 2. Diagrammatic explanation of why Bhattacharyya distance is not
appropriate metric to model chance constraint problem. In this figure, we
have taken 2 sets of Gaussian distribution pairs which are touching at
same confidence contour of 80.51%. Meaning, area of overlap between two
Gaussians shaded in yellow is same for both sets of Gaussian distributions.
For figure 2(a), Σ1 =

(
0.04 0
0 0.02

)
, Σ2 =

(
0.02 0.01
0.01 0.02

)
. Bhattacharyya

distance evaluated using equation 9 for this set of co-variances turns out to
be 1.7105. While, for figure 2(b), Σ1 =

(
0.01 0
0 0.02

)
, Σ2 =

(
0.03 0
0 0.03

)
.

Value of Bhattacharyya distance for figure 2(b) is 1.6079. Hence, for same
amount of overlap between two sets of Gaussian distributions, Bhattacharyya
distances are turning out to be different. Areas shaded with yellow in figure
indicate amount of overlap.

The linear separator proposed in[18] works for two Gaus-
sians of dimension d ≥ 1.

Let the linear separator(a hyperplane in d dimensional
space) be αTx = β where α, x ∈ Rd and β ∈ R. αTx ≤ β
classifies x into first cluster and αTx > β classifies x
into second cluster. We will briefly explain the procedure to
obtain α, β and estimate the area of overlap(Υ) between two
Gaussian distributions N (µi, Σi) with i = {1, 2}. Here, x is
coming from one of the above two Gaussian distributions
and αTx is a linear transformation which transforms the
original distribution into uni-variate normal distribution. The
probability of misclassification when x is coming from first
distribution is,

P1(αTx > β) = P1(
αTx− αTµ1√

αTΣ1α
>
β − αTµ1√
αTΣ1α

)

P1(αTx > β) = 1− Φ(
β − αTµ1√
αTΣ1α

) = 1− Φ(η1) = P1(η1)

(10)
Similarly, probability of misclassification when sample x

belongs to population 2 equals,

P2(αTx ≤ β) = P2(
αTx− αTµ2√

αTΣ2α
≤ β − αTµ2√

αTΣ2α
)

P2(αTx ≤ β) = 1− Φ(
αTµ2 − β√
αTΣ2α

) = 1− Φ(η2) = P2(η2)

(11)
Where, η1 = β−αTµ1√

αT Σ1α
and η2 = αTµ2−β√

αT Σ2α
are two

scalars. Φ in equations 10-11 denotes a cumulative distri-
bution function for a univariate standard normal distribution.
Φ is a monotonically increasing function. Our objective is
following,

max(P1(η1),P2(η2))→ min
α ∈ Rdβ ∈ R

(12a)

min(η1, η2)→ max
α ∈ Rdβ ∈ R

(12b)

Equations 12a-12b are equivalent due to monotonic nature
of the Φ. The objective is to maximize the minimum of
(η1, η2). The objective is to find α, β, which will minimize
the maximum probability of misclassification. Analytical
characterization of α, β in terms of µ1,Σ1, µ2,Σ2 can be
expressed as following,

α = (λ1Σ1 + λ2Σ2)−1(µ2 − µ1) (13a)

β = αTµ1 + λ1α
TΣ1α = αTµ2 − λ2α

TΣ2α (13b)
Here, λ1 and λ2 are two scalars and resulting procedure to

estimate these parameters is referred to as minmax proce-

dure. The minmax procedure is an admissible procedure[18]
when η1 = η2. For admissible procedure, λ = λ1 = 1 - λ2.
If we substitute analytical characterization of α, β in η1, η2,
the following equality must hold for admissible procedure.

η21 − η22 = αT [λ2Σ1 − (1− λ)2Σ2]α = 0 (14)
The above criterion is a necessary condition to get the

best approximation of amount of overlap. We will call
λ ”overlap parameter”, as it is a deciding factor which
completely characterizes the overlap for a given first and
second order Gaussian moments. Here, value of overlap
parameter λ is determined heuristically using equation 14 as
a base condition. Algorithm 1 is used to determine optimal
value of λ. The overlap parameter λ completely dictates the
linear separator parameters α and β. Once we get optimal
value of λ, we can estimate linear separator parameters α, β.
Since the procedure is admissible, we can compute P1(η1)
= P2(η2) = Pminmax. The amount of overlap(Υ) can be
computed as below,
η1 = h1 (α, β), α = h2 (λ), β = h3 (λ)

Υ = P1(η1) + P2(η2) = 2Pminmax = h(µ1, µ2,Σ1,Σ2, λ)

(15)
Here, we can notice that component of overlap(Υ) is pa-

rameterized by linear separator parameters α and β. Overlap
parameter λ is completely dictating α and β as evident from
equation 13. Hence, λ dictates the amount of overlap Υ.
Here, λ is determined through an iterative procedure. As
seen in figure 3, the overlap is determined by substituting
for different values of λ in 15, a typical iterative routine
settles for some value of λ, when the overlap is correctly
determined, this can be noticed in Fig 3(d)-3(f). When
we estimate area of overlap for the two sets of Gaussian
distributions in figure 2 using algorithm 1, the area of
overlap turns out to be Υ = 0.0706, which is same for
both sets of Gaussian distributions shown in figures 2(a)
and 2(b). Purpose of figure 3 is to empirically establish our
finding that any two sets of Gaussian distributions touching
at same confidence contours have same amount of overlap
calculated according to algorithm 1. We exploit this finding
to uniquely determine prescribed area of overlap based on
user specified confidence contour threshold. In other words,
there is a unique mapping between area of overlap of two
k variate Gaussians and confidence contours ct(where they
are touching each other). The current scope of this paper
explores this concept for k = 2, 3. We create a table that
would give us unique value of overlap for a given value of
ct. We show relation between contour of touch(ct) and area
of overlap(Υ), in the figure 3(g)-3(h).

Algorithm 1 OverlapEstimation(µ1, Σ1, µ2, Σ2, precision)
1: initialize increment, criterion, λ
2: repeat
3: calculate α with 13a
4: calculate criterion with 14
5: if criterion > precision
6: then λ ← λ - increment
7: if criterion < -precision
8: then λ ← λ + increment
9: increment ← increment

2
10: until -precision ≤ criterion ≤ precision
11: return λ

V. PROBABILISTIC COLLISION AVOIDANCE AS OVERLAP
BETWEEN TWO GAUSSIANS

Equation 7 represents analytical expression of chance con-
straint defined in section IV. Our objective is to maximize the
probability of collision avoidance. Here, we propose a novel
formulation by modeling a non-linear chance constraint as
overlap between component of two Gaussian distributions.
We demonstrate in figure 4 that minimization of overlap



Fig. 3. This figure demonstrates how the values of overlap parameter λ
evolves as algorithm 1 executes. It starts with initialized value of λ and
ultimately converges to the value where the linear separator divides the
two Gaussian distributions at the same confidence interval. From figure
3(a) -3(d), the Gaussian configuration considered is same as that of figure
2(a). Both the Gaussian distributions are touching at confidence contour
corresponding to 80.51%. Equality constraint of equation 14 ensures that
both the Gaussians are touching at the same confidence interval. The line
drawn in the figure is αT x = β. We can see orientation and position of the
line evolving as overlap parameter λ converges. For converged value of λ,
we can see that the optimal linear separator passes through the point of touch
of the two Gaussian distributions. Figure 3(e) -3(f) shows λ converging
for Gaussian configuration considered in figure 2(b). We can see value of
overlap turning out to be same for both sets as shown in figure 3(d)-3(f).

between two Gaussians is analogous to maximization of
probability of collision avoidance.

A. Trajectory optimization with chance constraints
In section III, we discussed deterministic trajectory opti-

mization routine. In this section, we reformulate this routine
to accommodate state uncertainty of the agent and obstacle.
We express collision avoidance constraint as desired measure
of overlap between Gaussian populations of an agent and
obstacle. The remodeling will use theory of overlapping
of Gaussians described in section IV-C. Since there is an
uncertainty in agent’s position, we will redefine Jterminal as
below,

Jterminal = (X̂tN −Gf )(ΣdtN )−1(X̂tN −Gf )T (16)

Equation 16 is Mahalanobis distance, which characterizes
the number of standard deviations a point is away from
mean of a distribution. Equation 16 will minimize number
of standard deviations goal point is away from the mean
position of the agent at the end of the trajectory.

Here, we are assuming no uncertainty in the actuation.
Further, we assume that belief propagation for agent and
obstacles for a given time-horizon is known. Hence, mini-
mization of overlap between agent and obstacle populations
can be thought of as minimum number of standard deviations
an agent should deviate from its path to ensure collision free
trajectory. While planning the trajectory, our constraint is to
ensure that the minimum value of cti for i ∈ {1, 2..., N} is
larger than certain threshold cmin, a user specified confidence
contour which can’t be penetrated. Which is analogous to
saying that the overlap between an agent and obstacle at
any time instant should not be greater than the prescribed
overlap threshold Υmax. cti represents confidence contour
percentage at which agent and obstacle/object are touching
each other at time ti.

1) Reformulation of collision avoidance constraint: Our
goal is to reach Gf from the start position X0 in N time-
steps, each time-step of duration τ . Here, our objective is
to find optimal set of velocity commands Vti = (vxti , v

y
ti ,

vzti ) which would satisfy our constraints as well as minimize
the cost. We will be using the process model of the agent
explained in section III.

Let the overlap between agent and obstacle j at time
instance ti be Υj

ti , which is dictated by overlap parameter
λjti . then,

X̂ti = f (X̂t0 , Vt1 , Vt2 , Vt3 ....Vti) (17a)

Υj
ti

= g1 (X̂ti ,Σ
d
ti , Ô

j
ti
,Σ

oj
ti
, λjti) (17b)

Equation 17b is completely analogous to equation 15. In
equation 17b, overlap is expressed in terms of agent/obstacle
means, their corresponding uncertainties and overlap param-
eter. Mean position of the agent is expressed in terms of
control commands(Vt1 , Vt2 , ...Vti ) as explained in motion
model(equation 4). Hence, equation 17b is completely pa-
rameterized by control commands(Vt1 , Vt2 , ...Vti ) and over-
lap parameter(λjti ). Similarly, We can express condition to
admissible procedure(equation 18a) in terms of control and
overlap parameter as below,

(ηdti)
2 − (η

oj
ti

)2 = g2 (X̂ti ,Σ
d
ti , Ô

j
ti
,Σ

oj
ti
, λjti)

(ηdti)
2 − (η

oj
ti

)2 = f1 (λjti , Vt1 , Vt2 , Vt3 ...Vti)

}
(18a)

Υj
ti

= 2Pdti(η
d
ti) = 2Pojti (η

oj
ti

) = f2 (λjti , Vt1 , Vt2 ...Vti) (18b)

Equation 18a-18b are in accordance with equation 14-15,
equation 18a models necessary condition for the procedure
to be admissible in nature. It is important to note that
in equations 17b and 18a, Σdti , Ô

j
ti and Σ

oj
ti are known

quantities. Hence, the only unknowns we are interested in
solving are X̂ti and λjti . Where, X̂ti , mean of the agent at
time ti, which is a function of control commands according
to motion model equation.

The maximum allowed overlap Υmax is uniquely related
to minimum number of standard deviations not allowed to be
penetrated(cmin). cmin is expressed in terms of confidence
intervals directly. So for a particular confidence interval,
cmin will have a unique scalar value. Hence, a unique Υmax
value as explained in section IV-C. So, a chance constraint
in terms of overlap between two Gaussians can be expressed
as below.

Ctiobsj (.) =

{
(ηdti )2 − (η

oj
ti

)2 = f lin1 (λjt1 , Vt1 , ..., Vti ) = 0

Υjti = f lin2 (λjt1 , Vt1 , ..., Vti ) ≤ Υmax
(19)

∀ i ∈ {1, 2, 3, ... N} , ∀ j ∈ {1, 2, 3, ... P}

Both the constraints of collision avoidance
constraint(equation 19) are parameterized by velocity



(a) (b) (c)

Fig. 4. We establish an analogy between minimization of overlap between Gaussians as maximization of probability of collision avoidance modeled
according to equation 6. Through an illustration, we demonstrate that as the amount of overlap between two distributions decreases, probability of collision
avoidance increases. This is aptly conveyed through figure 4(a)-4(b)-4(c). For example, in figure 4(a), for a significant amount of overlap, the area below
0 in the cdf plot is very less. However, in figure 4(b) and 4(c), as the overlap decreases(achieved through incrementally separating µ2 from µ1), the
corresponding area below 0 observed in the cdf plots significantly increases. Thus, it is clear that as the overlap between these two distributions decreases,
the probability of collision avoidance[6](conveyed through cdfs) increases. The cdf plots of equation 6 were generated through ecdf() function of Matlab.
The covariances considered for this demonstration are, Σ1 =

(
0.01 0
0 0.02

)
and Σ2 =

(
0.03 0
0 0.03

)
.

controls(Vt1 , Vt2 , ...Vti ) and overlap parameter(λjti ).
Υj
ti ≤ Υmax ensures that the agent is avoiding the obstacle

with certain minimum confidence. (ηdti)
2 − (η

oj
ti )2 = 0

ensures that the overlap parameter(λjti ) we get through
SCP routine is optimal and satisfies condition to admissible
procedure. Closed form expressions for f1 (.) and f2 (.) are
functions of optimization variables(Vt1 , Vt2 , ..., VtN , λ

j
ti )

which are computed using mathematica[19]. f1 (.) and f2 (.)
are non-linear in our variables of interest. We linearize them
as shown below,

f lin
1 () = f̄1 () +

i∑
k=1

OVtk
(Vtk − V̄tk ) + O

λ
j
ti

(λjti − λ̄
j
ti

) (20)

f lin
2 () = f̄2 () +

i∑
k=1

OVtk
(Vtk − V̄tk ) + O

λ
j
ti

(λjti − λ̄
j
ti

) (21)

∀ i ∈ {1, 2, 3, ... N} , ∀ j ∈ {1, 2, 3, ... P}
f lin
1 (.) and f lin

2 (.) are affine approximations of f1 (.) and
f2 (.). OVtk

and Oλj
ti

are partial derivatives with respect to

Vtk and λjti respectively.
2) Trajectory optimization algorithm: We outline com-

plete trajectory optimization algorithm built on above
scheme. Let the trajectory of obstacle j be denoted by
Ωj = {Ojt1 , O

j
t2 , O

j
t3 , ...O

j
tN } and trajectory of all P ob-

stacles be ΠP = {Ω1 ,Ω2 ,Ω3 , ...ΩP}. Let overlap param-
eter between obstacle j’s distribution and agent’s distri-
bution for N timesteps be Λj = {λjt1 , λ

j
t2 ...λ

j
tN }, j ∈

{1, 2, 3, ... P} and controls we are solving for be V(t) =
{Vt1 , Vt2 , Vt3 , ..., VtN }. Algorithm 2 outlines proposed SCP
routine where we jointly solve for control(V(t)) and over-
lap parameter(Λj). In this algorithm, linearization control
points V̄(t) = {V̄t1 , V̄t2 , V̄t3 , ..., V̄tN } are obtained by run-
ning the algorithm without collision avoidance constraints.
That will give us an optimal trajectory from start to goal
without any deviation. While overlap parameter linearization
points are initialized with 0.5. Which implies that, Λ̄j =
{0.5, 0.5, ..., 0.5}. Subsequently, solution of previous itera-
tion is used as linearization point in current iteration, which
is implied in stage 4 and 5 of algorithm 2.

VI. RESULTS AND DISCUSSIONS

We construct a model predictive control framework by us-
ing proposed probabilistic trajectory optimization routine as a
base. Our proposal has been extensively evaluated for wide
range of safety critical configurations. We show two such

Algorithm 2 ProbabilisticTrajOpt(Υmax, ΠP , Σagent,
Σobstacle)
1: Initialization: Guess for Λ̄k

j (t), V̄k(t), iteration counter k = 0
2: D̄k (t) = InitializeTrajectory(V̄k (t))
3: while | Jk+1 − Jk | ≥ δ do

Vk (t),Λk
j (t) = argmin Jk

subject to
Xti+1 = f (Xti , Vti )

Vmin ≤ Vti ≤ Vmax

amin ≤ (
Vti+1 − Vti

τ
) ≤ amax

Cobsj (Λk
j (t),Vk (t))≤ 0, ∀ j = {1, 2, 3, ... P}

4: Λ̄k
j (t)← Λk

j (t)

5: V̄k (t)← Vk (t)
6: k ← k + 1
7: end while

Fig. 5. This figure shows how confidence contour of touch(cti ) is changing
over time for setting considered in VI-B. Throughout the trajectory, our
agent is able to satisfy both, lower and upper-bound constraints. Initial rise
in plot suggests that agent was slowing down first, and then it gradually
accelerated to satisfy upper-bound constraint.

challenging situations to evaluate our proposal. We use Mat-
lab based CVX[20] to prototype many of these scenarios. For
a faster implementation, we use python based CVXOPT[21].
The simulations are carried out using Rotors[22], which
is a micro aerial vehicle simulation framework built in
gazebo[23]. The proposed approach is implemented in a
model predictive control framework(MPC) along the lines
of [24], [24] uses the idea of a receding horizon as the basis
for building an MPC. We plan for a finite horizon and upto
some intermediate way-point along the original trajectory.



Intermediate way-points are placed at regular intervals to
avoid extreme deviations in agent trajectory. In this sec-
tion, we show results for two interesting applications. The
detailed video of simulations under various safety critical
situations is provided at https://robotics.iiit.
ac.in/people/dhaivat.bhatt/video.html

A. Multiple obstacle avoidance: Antipodal configuration
In this experiment, we show 3 obstacles attacking our

agent in an antipodal configuration. The agent detects ob-
stacles at sensing range of Sr = 10 meters. The acceleration
bounds amin, amax are −0.5 m/s2, 0.5 m/s2 respectively.
Value of Vmin and Vmax are 0 m/s , 3.0 m/s respectively.
We keep a planning horizon of 28 steps, each of duration
τ = 0.3 seconds. We keep re-planning at every 0.3 seconds.
Radius of agent/obstacles is taken as 0.5 meters. For this
configuration, we consider cmin = 90% as our user specified
confidence contour bound. In other words, our objective
is to ensure that at least 90% confidence contours of the
agent and obstacles do not penetrate each other during entire
journey of the agent. As soon as it detects the obstacles,
it starts deviating from its trajectory and 90% confidence
contour of the agent avoids 90% confidence contours of
all 3 obstacles. The position uncertainties considered are

Σagent = Σobs1 = Σobs2 = Σobs3 =

(
0.02 0 0

0 0.02 0
0 0 0.02

)
. With

this configuration, we show comprehensive results in figure
6. Sequence of images in figure 6 shows some snaps during
obstacle avoidance maneuver, the navigation was successful
and user specified lower bound was respected throughout the
trajectory. As shown in confidence plots in figure 6(d)-6(e)-
6(f), penetration for violet and dark green obstacles was at
95%, while for blue obstacle, it was 98%.
B. Object following in constrained corridor

We show another interesting application of our proposal.
If agent and object of interest are entering in a constrained
corridor, apart from putting lower bound cmin, we can
also put upper bound(cmax) in such tight spaces. Putting
upper bound will ensure that agent is not slowing down too
much. Sub-constraint 2 of equation 19 will take a form like
Υmin ≤ Υj

ti ≤ Υmax. Through demonstration, we advocate
the usage of upper bound constraint in tight spaces or in
situations where we need to follow/track object of interest.
Upper bound ensures that agent is within certain range of
object, which will reduce deviation in agent’s trajectory, thus
ensuring no collision with surrounding walls. We consider a
case where agent and obstacle are entering in a constrained
corridor at same time. In this case, user specified confidence
contour bounds are cmin = 30% and cmax = 60%. In other
words, at least 30% confidence contours of agent and object
can not penetrate into each other, while 60% confidence
contours can’t have 0 overlap at any time instant during the
trajectory. Our planning horizon is of 40 timesteps, each of
duration τ = 0.3 seconds. Uncertainty being considered is,

Σagent =

(
0.02 0.01 0
0.01 0.02 0

0 0 0.02

)
and Σobject =

(
0.03 0.02 0
0.02 0.03 0

0 0 0.02

)
.

Before solving an MPC, these matrices are scaled up to
incorporate radius of agent and obstacle. We consider non-
isotropic uncertainty for this demonstration and show ef-
ficacy of our algorithm under tight spaces. In figure 7,
We show snippets of various time-instances. The walls are
modeled as stationary obstacles. For example, in figure 7(a),
agent and object are entering in the corridor. Both upper
bound and lower bound constraints are enforced and we
can see that agent is able to maintain sufficient distance
from the wall as well as the object while respecting the

constraints. An absence of upper-bound constraint results in
slowing down of the agent and we encounter a longer time
for flight completion. Having upper bound favorably changes
the velocity profile to complete trajectory in faster time. This
shows usefulness of our proposal in tightly bounded spaces.
We can use such modeling in object following. In figure 5,
we show confidence plot for entire trajectory.

VII. CONCLUSION AND FUTURE WORK

In this paper, a novel approach to dynamic collision avoid-
ance and object following under uncertainty in state of robot
and obstacles, modeled using Gaussian distribution, has been
proposed. It has been derived by using area of overlap of
the Gaussian distributions, which has unique characterization
for a given confidence contour. The proposed algorithm,
integrated with Linear MPC, optimizes over velocity profile
and overlap parameter space to generate a navigation path in
constrained dynamic environment. The paper puts forward
results for two safety critical configurations. In future, we
intend to model actuation dynamics into overlap of Gaussian
framework and attempt to solve for challenging scenarios
with unbounded co-variances. We can also model co-variance
as a function of control and include into overlap of Gaussians
framework. Another interesting task would be to extend this
formulation for motion planning of non-holonomic vehicles.
We can extend this formulation for multi-agent motion
planning, where a centralized optimization routine will solve
for control sequence of all agents with a guaranteed risk
bound.
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Fig. 6. Antipodal setting: The agent adopts a maneuver relating to a particular confidence of safety when it encounters obstacles in its sensing range.
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90% confidence contours of all obstacles. From figures 6(d)-6(e)-6(f), we can observe that maximum overlap between the agent and any obstacle is 5%,
i.e. only the 95% confidence contours grace each-other.

Fig. 7. Object following in constrained corridor: In figure 7(a), confidence contour for 30% and 60% are shown for both, agent and object. agent senses
presence of obstacle at time t = 4sec. As agent enters in corridor, lower and upper bound constraints are enforced. Which ensures minimum risk behavior.
For example, in figure 7(b)- 7(c), we can see overlap between agent and obstacle shaded in green for 60% confidence contours. While, 30% confidence
contours which correspond to lower bound never penetrate each other as visible in figure 7(b)-7(c). Figure 7(e) shows top view of figure 7(b) in gazebo.
Under such tightly bounded spaces, we observe that agent is able to safely maneuver constraints without crashing into walls. Trajectory deviation shown
in 7(c) depicts that agent can maneuver in a way that would make it stay reasonably behind the object of interest while satisfying both lower and upper
bound constraints. Figures 7(d)-7(e)-7(f) are gazebo results of figures 7(a)-7(b)-7(c) in bird’s eye view.
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