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Abstract— While modern deep neural networks are perfor-
mant perception modules, performance (accuracy) alone is
insufficient, particularly for safety-critical robotic applications
such as self-driving vehicles. Robot autonomy stacks also
require these otherwise blackbox models to produce reliable
and calibrated measures of confidence on their predictions.
Existing approaches estimate uncertainty from these neural
network perception stacks by modifying network architectures,
inference procedure, or loss functions. However, in general,
these methods lack calibration, meaning that the predictive
uncertainties do not faithfully represent the true underlying
uncertainties (process noise). Our key insight is that calibration is
only achieved by imposing constraints across multiple examples,
such as those in a mini-batch; as opposed to existing approaches
which only impose constraints per-sample, often leading to
overconfident (thus miscalibrated) uncertainty estimates. By
enforcing the distribution of outputs of a neural network to
resemble a target distribution by minimizing an f -divergence,
we obtain significantly better-calibrated models compared to
prior approaches. Our approach, f -Cal, outperforms existing
uncertainty calibration approaches on robot perception tasks
such as object detection and monocular depth estimation over
multiple real-world benchmarks.

I. INTRODUCTION

The performance of deep neural network-based visual
perception systems has increased dramatically in recent years.
However, for safety-critical embodied applications, such as
autonomous driving, performance alone is not sufficient. The
absence of reliable and calibrated uncertainty estimates in
neural network predictions precludes us from incorporating
these into downstream sensor fusion [1] or probabilistic
planning [2], [3], [4] components.

The tools of probabilistic robotics require calibrated confi-
dence/uncertainty measures, in the form of a measurement
model z = h(x, ν). For a traditional sensor, this model h
is specified by the designer’s understanding of the physical
sensing processes, and the noise distribution parameters ν
are estimated by controlled calibration experiments with
known ground truth states x∗ and sensor observations z.
However, for deep neural networks (DNNs) to be used
as sensors in typical robotic perception stacks, estimating
the noise distribution is a much more challenging task for
several reasons. First, the domain of inputs is extremely high
dimensional (e.g., RGB images) - generating a calibration
setup for every possible input is infeasible. Second, the
noise distribution is input dependent (heteroscedastic). Finally,
neural networks typically transform the inputs via millions
of nonlinear operations, preventing approximation by simpler
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Fig. 1: f -Cal enables us to obtain calibrated measures of uncertainty
from otherwise blackbox neural networks used in robot perception
tasks. This didactic example demonstrates how f -Cal can estimate
the aleatoric uncertainty from object detectors. (a) depicts a ground-
truth bounding box, a single-sample (dirac-delta) distribution; (b) and
(c) denote uncalibrated probabilistic outputs from a Bayesian neural
network – (b) is overconfident and inconsistent, (c) is consistent
but underconfident; (d) denotes a calibrated estimate, i.e., the error
ellipses correspond to the true underlying aleatoric uncertainty.

(e.g., piecewise affine) models. We envision a deep neural
network (DNN) as a sensor paradigm where a DNN
outputs calibrated predictive distributions that may directly
be used in probabilistic planning or sensor fusion. The
challenge, however, is that these predictive distributions must
be learned solely from training data, with neither additional
postprocessing nor architectural modifications.

Our key insight is that distributional calibration cannot
be achieved by a loss function that operates over individual
samples. This motivates a new loss function that enforces
calibration through a distributional constraint that is imposed
upon uncertainty estimates across multiple (i.i.d.) samples.
Specifically, our approach f -Cal, minimizes an f -divergence
between a specified canonical distribution and an empirical
distribution generated from neural network predictions, as
shown in Fig. 2. Unlike prior approaches [5], [6], [7], we
neither require a held-out calibration dataset nor impose any
inference time overhead. For a given performance threshold,
f -Cal achieves better calibration compared to current art.
We demonstrate the effectiveness, scalability and widespread
applicability of this approach on large-scale, real-world tasks
such as object detection and depth estimation.

II. RELATED WORK
The rapidly growing field of Bayesian deep learning

has resulted in the development of models that estimate a
distribution over the output space [8], [9], [10], [11], [12].
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There is a distinction between uncertainty that is due to
the stochasticity of the underlying process (aleatoric) versus
uncertainty that is due to the model being insufficiently trained
(epistemic) [10] Epistemic uncertainty is often estimated by
either using ensembles of neural networks or by stochastic
regularization at inference time (Monte-Carlo dropout) [9],
[11], [13]. Distributional uncertainty is also being extensively
studied, to detect out of training-distribution examples [14],
[11], [15], [16], [17], [18], [19], [20], [21]. However, there
is no direct approach to address distributional uncertainty for
regression settings.

In this work, we assume distributional and epistemic
uncertainty to be low (i.e., in-distribution setting with
reasonably well-trained models such as those common in
robot perception), and focus specifically on calibrating
aleatoric uncertainty estimates in regression problems. Such
challenging settings have received far less attention in terms of
uncertainty estimation [22], [5], [23], [7]. Existing calibration
techniques are post-hoc and either require a large held-out
calibration dataset [7] and/or add parameters to the model after
training [7], [6]. Quantile regression methods [24], [13], [25],
[26], [27] quantify uncertainty by the fraction of predictions
in each quantile. Other methods, such as isotonic regression
and temperature scaling, have also been extended to be the
regression setting [22], [7]. Authors in [28] proposed an
alternate architecture for aleatoric uncertainty estimation.
However, f -Cal is completely architecture agnostic, and
can be applied to any probabilistic neural regressors. More
recently, a calibration loss is proposed in [7] that enforces
the predicted variances to be equal to per-sample errors, thus
grounding each prediction. However, this takes on a local
view of the calibration problem, and while individual samples
might appear well-calibrated, the overall distribution of the
regressor errors exhibits a strong deviation from the expected
target distribution (cf.Sec. V).

A recent approach that is somewhat similar to ours in spirit
is Gaussian process beta calibration (GP-beta) [5]. It is a
post-hoc approach that employs a Gaussian process model
(with a beta-link function prior) to calibrate uncertainties
during inference. This requires the computation of pairwise
statistics, exacerbating inference time. In the maximum
mean discrepancy (MMD) loss [29] distribution matching is
performed to achieve calibration. This method was proposed
for small datasets and does not scale well with input size.
f -Cal is a superior performing loss function that requires the
same inference time as typical Bayesian neural networks [30].

III. PROBLEM SETUP

A. Preliminaries

We assume a regression problem over an i.i.d. labelled
training dataset D ≜ {(xi, yi)}i=1...|D| with xi ∈ X where
X is the (n-dimensional) input space and yi ∈ Y where
Y ⊆ Rn is the output space.

A deterministic model fd : X 7→ Y 1 directly learns the
mapping from the input to the output space by minimizing a

1In practice these models are assumed to be neural networks with
parameters θ but we omit the θ for clarity at this stage.

loss function L : Y ×Y 7→ R, for example through empirical
risk minimization:

Remp(fd) =
1

N

N∑
i=1

L(fd(xi), yi). (1)

Equation 1 is typically estimated over a mini-batch of
size N << |D| during stochastic gradient descent (SGD).
Following the notation in [5], we desire a probabilistic model
fp : X 7→ SY where SY is the space of all probability density
functions s(y) over Y (s : Y 7→ [0,∞) and

∫
s(y)dy = 1).

The probability density function (PDF) is defined through its
cumulative density function (CDF): S(y) =

∫ y

−∞ s(y′)dy′.

B. Uncertainty Calibration
Calibrated uncertainty estimates are those where the output

uncertainties can be exactly interpreted as confidence intervals
of the underlying target label distribution. This allows
uncertainty estimates across multiple samples (and models)
to be compared. Intuitively, we understand the notion of
uncertainty calibration to mean that if we repeated a stochastic
experiment a large number of times, for example by asking
many different people to label the same image, that the “label
generating distribution” matches the predictive distribution
of the model: yi ∼ fp(xi) (2)

However, it is impractical to label every piece of data
multiple times. Instead, we aggregate the labels across many
different inputs to produce calibrated predictive distributions.
Using our definitions from Sec. III-A and adapting from [5],
we can define what we desire in terms of calibration in the
case of a deep neural regressor as follows:

Definition 1 (Uncertainty Calibration): A neural regres-
sor fp is calibrated if and only if 2:

p(Y ≤ y|s(y)) =
∫ y

−∞
s(y′)dy′ ∀y ∈ Y (3)

In the above definition, Y is an instantiation of the random
variable y. If we can assume that the noise is sampled from
a parametric distribution s(y;ϕ), then the probabilistic model
need only output the parameters associated with each sample.
In this case, we can consider the model to be calibrated if and
only if the aggregated error statistics over multiple outputs
of a model align with the parameters predicted by the model.

C. Loss Attenuation (Negative Log-Likelihood - NLL)
The most widely used technique for estimating het-

eroscedastic aleatoric uncertainty is loss attenuation [10],
[31], which performs maximum likelihood estimation by
minimizing the negative log-likelihood loss:

Remp(fp) = −
1

N

N∑
i=1

LLA(fp(xi), yi)

= − 1

N

N∑
i=1

log s(yi; fp(xi)) (4)

since fp(xi) outputs the parameters of the distribution. For
example, if the aleatoric uncertainty is characterized by a

2Referring to Fig. 1, the requirement for calibration is more stringent than
that of consistency, which is a one-way constraint at an arbitrary confidence
bound c: p(Y ≤ y|s(y)) ≤ c
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Fig. 2: f -Cal pipeline: We make a conceptually simple tweak to the loss function in a typical (deterministic) neural network training
pipeline. In addition to the empirical risk (e.g., L1, L2, etc.) terms, we impose a distribution matching constraint (Lf−Cal) over the error
residuals across a mini-batch. By encouraging the distribution of these error residuals to match a target calibrating distribution (e.g.,
Gaussian), we ensure the neural network predictions are calibrated. Compared to prior approaches, most of which perform post-hoc
calibration, or require large held-out calibration datasets, f -Cal does not impose an inference time overhead. f -Cal is task and architecture
agnostic, and we apply it to robot perception problems such as object detection and depth estimation.

Gaussian random variable (ϕ ≜ (µ, σ)), the above expression
becomes

Remp(fp) =
1

N

N∑
i=1

1

2

(
(yi − µi)

2

σ2
i

+ log σ2
i

)
(5)

We refer to the loss in (5) as the NLL loss in the experiments.
However, probabilistic neural regressors trained using this
NLL objective typically lack calibration according to Def. 1.

IV. f -CAL: VARIATIONAL INFERENCE FOR ALEATORIC
UNCERTAINTY CALIBRATION

In this section we present f -Cal, a principled approach to
obtain calibrated aleatoric uncertainty from neural nets.

A. Calibration as Distribution Matching

Following the definition of distributional calibration
(Def. 1), f -Cal formulates a variational minimization objective
to calibrate the uncertainty estimates from a deep network.

In the case of a traditional (non deep learning based) sensor,
we would calibrate the noise distribution with the procedure:

1) Choose a distribution family for the noise
2) For a fixed and known input value, draw multiple

samples of the output observations
3) Fit the output samples to the distribution family
In the DNNS case, we only have one sample for any

given input and we have no knowledge of the ground truth
(noise free) label. We can similarly choose a distribution
family for our model, but we cannot assume that any of
the parameters are fixed across samples. Our approach to
overcome this problem will be to assume that there is
some canonical element of the distribution family that we
can transform each predictive distribution to. Specifically,
we seek to approximate the empirical posterior over some
canonical transformation of the target variables Y by a
simpler (tractable) target distribution Q (modeling choice).
This enables us to leverage an abundant class of distribution
matching metrics, f -divergences, to formulate a loss function
enforcing distributional calibration. For tractable inference, we
assume i.i.d. mini-batches of training data and instead impose
distribution matching losses over empirical error residuals
across each batch.

We assume that we can transform each training sample
output distribution to some canonical element of the distri-
bution family. For instance, Gaussian random variables are

canonicalized by centering the distribution (subtracting the
output label), followed by normalization (scaling the result
by the inverse variance). These canonical elements are used
(in conjunction with the labels) to determine the empirical
error distribution. f -Cal then performs distribution matching
across this empirical and a target distribution.

B. f -Cal Algorithm

Given a mini-batch containing N inputs xi, a probabilis-
tic regressor predicts N sets of distributional parameters
fp(xi) = ϕi (ϕi ∈ Φ) to the corresponding probability
distribution s(yi;ϕi). Define g : Y × Φ 7→ Z as the function
that maps the target random variable yi to a random variable
zi which follows a known canonical distribution. Since
these residuals {z1, z2, . . . , zN} must ideally follow a chosen
calibrating (target) distribution Q:

zi = g(yi, ϕi) ∼ Q (6)
The key difference between (2) and (6) is that (6) now
applies for all samples in the dataset, as opposed to just a
single sample. As a result, we can now follow the similar
procedure that we would with a traditional sensor and
compute the empirical statistics of the residuals of the zi
variables across the entire set (or in practice across a mini-
batch) to fit a proposal distribution Pz , and minimize the
distributional distance from the canonical distribution Q. This
minimization can be performed with variational loss function
that minimizes an f -divergence, Df (Pz||Q), between these
two distributions. In summary, we propose a distribution
matching loss function that augments typical supervised
regression losses, and results in the neural regressor being
calibrated to the target distribution:

L = (1− λ)Remp(fp) + λLf -Cal (7)
= (1− λ)Remp(fp) + λDf (Pz||Q)

where λ is a hyper-parameter to balance the two loss terms
(we provide thorough analysis of the choice of λ in Sec. V.
We experiment with a number of f -divergence choices, and
identify KL-divergence and Wasserstein distance as viable
choices. Importantly, f -Cal is agnostic to the choice of
probabilistic deep neural regression model or task. In practice,
it is a straightforward modification to the training loss function
that can also be applied as a fine-tuning step to a previously
partially trained model.

6535

Authorized licensed use limited to: Université de Montréal. Downloaded on September 07,2022 at 18:20:54 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: f -Cal for Gaussian uncertainties
Input : Dataset D, probabilistic neural regressor, fp,

degrees of freedom K, batch size N , number
of samples for hyper-constraint H

for i = 1 . . . N do
(µi, σi)← fp(xi)
zi ← yi−µi

σi

end
C = ∅ // Samples from Chi-squared distribution
for i = 1 . . . H do

// Create a chi-squared hyper-constraint

qi ←
K∑
j=1

z2ij , zij ∼ {z1 · · · zN}

C.append(qi)
end
Pz ← Fit-Chi-Squared-Distribution(C)
Lf -Cal ← Df (Pz||χ2

K)
return Lf -Cal

C. f -Cal for Gaussian calibration
The f -Cal framework is generic and can be applied to

arbitrary distributions. In this section we consider the case
when the distribution s(yi;ϕi) is Gaussian with ϕi ≜ (µi, σi).
The variance σ2

i denotes the aleatoric uncertainty in this case.
The error residuals are computed as zi =

yi−µi

σi
, where µi

and σi are predicted mean and the standard deviation of the
ith Gaussian output from the neural network for each input
xi. So, yi ∼ N (µi, σ

2
i ), then zi ∼ N (0, 1).

Optionally, one may apply several transforms to the random
variables yi and impose distributional hyper-constraints over
the transformed variables. In practice, we find that this can
improve the stability of the training process and enforces
more stable calibration. In this case we compute the sum-
of-squared error residuals q =

∑K
i=1 z

2
i , and enforce the

resulting distribution to be Chi-squared with parameter K
i.e q ∼ χ2

K , so in this case target distribution Q = χ2
K .

Subsequently, we note that as the degrees of freedom K of
a Chi-squared distribution increase, it can be approximated
by a Gaussian of mean K and variance 2K through the
application of the central limit theorem:

lim
K→∞

χ2
K −K√
2K

→ N (0, 1) =⇒ lim
K→∞

χ2
K → N (K, 2K)

In practice, this variation of the central limit theorem for
Chi-squared random variables holds for moderate values of K
(i.e., K > 50). This is practical to ensure, particularly in dense
regression tasks such as bounding box object detection (where
hundreds of proposals have to be scored per image) and per-
pixel regression. We summarize the process for generating
the calibration loss in Alg. 1. This loss is then combined
with the typical empirical risk as given by (7).

V. EXPERIMENTS

We conduct experiments on a number of large-scale
perception tasks, on both synthetic and real-world datasets.
We report the following key findings which we elaborate on
in the remainder of this section.

1) f -Cal achieves significantly superior calibration com-
pared to existing methods for calibrating aleatoric
uncertainty.

2) These performance trends are consistently observed
across multiple regression setups, neural network ar-
chitectures, and dataset sizes.

3) We demonstrate that there is a trade-off between de-
terministic and calibration performance by varying the
λ hyper-parameter. This trade-off has been established
in previous literature [7], [17]. However, we further
demonstrate empirically that this trade-off is inherently
caused by a mismatch between the choice of the noise
data distribution family and the true underlying noise
distribution.

A. Regression tasks

We consider 3 regression tasks: a synthetic disc tracking
dataset (Bokeh), KITTI depth estimation [32] and KITTI
object detection [32]. These tasks are chosen to span the range
of regression tasks relevant for robotics applications: sparse
(one output per image in disc tracking), semi-dense (object
detection), and pixelwise (fully) dense (depth estimation).
Unless otherwise specified, we model aleatoric uncertainty
using heteroscedastic Gaussian distributions.

B. Baselines

We compare f -Cal models with the following baselines:
NLL loss [31], [8], Temperature scaling [7], Isotonic
regression [6], Calibration loss [7] and GP-beta [5]. We
report results for f -Cal, with KL-divergence (f -Cal-KL) and
Wasserstein distance (f -Cal-Wass) as losses for distribution
matching. We also experimented with a recently proposed
maximum mean discrepancy based method [29]. Being
designed for very low data regimes, it failed to solve any
of our tasks considered. Similarly, GP-Beta [5] and isotonic
regression [6] solve our synthetic tasks, but do not scale to
large, real-world tasks.

C. Evaluation metrics

We evaluate the accuracy in calibration by means of the
following widely used metrics. The expected calibration
error (ECE) [34], [7] measures the discrete discrepancy
between the predicted distribution of the neural regressor
and that of the label distribution. We divide the predicted
distribution into S intervals of size 1

S . ECE is computed
as the difference between the empirical bin frequency and
the true frequency( 1

S ). For total samples P and number of
samples in bin s as Bs, ECE =

∑S
s=1

|Bs|
P

∥∥∥ 1
S −

|Bs|
P

∥∥∥.
We report ECE scores for standard normal distribution and

chi-squared distribution in this work, which we denote by
ECE(z) and ECE(q) respectively. We also plot reliability
diagrams which visually depict the amount of miscalibration
over the support of the distribution. Perfectly calibrated
distributions should have a diagonal reliability plot. Portions
of a curve above the diagonal line are over-confident regions,
while those below the curve are under-confident.

6536

Authorized licensed use limited to: Université de Montréal. Downloaded on September 07,2022 at 18:20:54 UTC from IEEE Xplore.  Restrictions apply. 



Bokeh - synthetic dataset (a) KITTI - depth estimation (b) KITTI - Object detection (c) Cityscapes - Object detection (d)
Approach L1(GT)↓ L1↓ ECE(z)↓ ECE(q)↓ NLL↓ SiLog↓ RMSE↓ ECE(z)↓ ECE(q)↓ NLL↓ mAP↑ ECE(z)↓ ECE(q)↓ NLL↓ mAP↑ ECE(z)↓ ECE(q)↓ NLL↓

NLL Loss[31] 1.44 1.54 1.73 91.83 -1.60 9.213 2.850 2.39 99.0 2.403 54.451 0.304 5.37 1.022 38.309 0.224 3.503 1.069
Calibration Loss[7] 1.46 1.57 1.13 76.11 -1.68 9.604 2.918 1.71 99.9 2.879 50.405 2.33 81.848 0.773 39.218 0.163 9.681 0.999

Temperature scaling[7] 1.44 1.54 0.82 9.22 -1.70 9.213 2.850 2.36 99.9 3.362 54.451 0.315 4.151 1.021 38.309 0.226 2.705 1.065
Isotonic regression[6] 1.38 1.49 2.05 9.38 -1.57 - - - - - - - - - - - -

GP-Beta[5] 1.39 1.49 2.21 93.48 -1.54 - - - - - - - - - - - -
f-Cal-KL (ours) 1.42 1.52 0.56 9.21 -1.76 9.679 2.911 0.074 22.5 2.004 51.874 0.162 4.126 0.846 38.481 0.126 1.686 0.929

f-Cal-Wass (Ours) 1.43 1.54 0.79 7.99 -1.75 9.509 3.202 0.156 67.9 2.157 48.04 0.115 0.768 0.914 37.220 0.104 0.832 1.007

TABLE I: f -Cal - Results: We evaluate f -Cal for a wide range of robot perception tasks and datasets. In each column group (a, b, c, d),
we report an empirical risk (deterministic performance metric such as L1, SiLog, RMSE, mAP), expected calibration errors (ECE), and
negative log-likelihood. f -Cal consistently outperforms all other calibration techniques considered (lower ECE values). (a) We develop
Bokeh – a synthetic disc tracking benchmark that contains GT uncertainty values, useful for baseline comparisons. (b) Depth estimation
on the KITTI benchmark [32]. (c) Object detection on the KITTI benchmark [32]. (d) Object detection on the Cityscapes dataset [33].
Notably, f -Cal improves calibration without sacrificing deterministic performance. (Note: L1 scores are scaled by a factor of 1000 and
ECE scores by a factor 100 for improved readability. ↓: Lower is better, ↑: Higher is better, −: Method did not scale to task/dataset)

Fig. 3: Qualitative results: Uncertainty calibration for object
detection models (Faster RCNN) over the KITTI [32] dataset. (Left)
Models trained using an NLL loss term produce overconfident predic-
tions (notice how the model outputs small, low uncertainty, ellipses
for the occluded cars). (Right) f -Cal, on the other hand, produces
calibrated uncertainty estimates (notice the large covariances for
occluded cars, and the car in the foreground, whose endpoints are
indeed uncertain).

D. Bokeh: A synthetic disc-tracking benchmark

Since ground-truth estimates of aleatoric uncertainty are
extremely challenging to obtain from real-world datasets, we
first validate our proposed approach in simulation.

Setup: We design a synthetic dataset akin to [35] for a
disc-tracking task. The goal is to predict the 2D location of
the centre of a unique red disc from an input image containing
other distractor discs. All disc locations are sampled from a
known data-generating distribution.

Models: We use a 3-layer ConvNet architecture with an
uncertainty prediciton head. We train a model using the NLL
loss [31] for our baseline probabilistic regressor. We then
train two models using our proposed f -Cal loss (f -Cal-KL
and f -Cal-Wass).

Results: Table I(a) compares f -Cal to the aforementioned
baselines, evaluating performance (i.e., the accuracy of the
estimated mean) and calibration quality.

Fig. 4: Qualitative results for depth estimation models on the
KITTI [32] benchmark. (Top) Input image; (Middle) Predicted depth;
(Bottom) Predicted uncertainty.

We report the performance (Smooth-L1 error) denoted by
L1 in Table I for both the noise-free ground-truth (in typical
ML settings, we never have access to this variable. We only
ever access the noisy ground-truth labels), and the noisy

Fig. 5: Calibration plots on KITTI[32] object detection: Top:
Predicted Chi-squared distributions (using hyper-constraints) and
standard normal distributions from the residuals, Bottom: corre-
sponding reliability diagrams for chi-square and standard normal
space. f -Cal consistently yields superior calibration curves in both,
chi-square and standard normal space. These curves correspond to
results reported in Table I

ground-truth (accounting for label generation error).
We see in Table I that f -Cal outperforms all baselines

considered. It is worth noting that we perform better than
temperature scaling [7] despite this being a somewhat unfair
comparison (temperature scaling leverages a large held-out
calibration dataset, while we do not use any additional data).
f -Cal gives well-calibrated uncertainty estimates without
sacrificing the deterministic performance (more discussion of
this point in Sec. VI).

E. KITTI Depth Estimation
Setup: We evaluate f -Cal on real-world robotics tasks like

depth estimation and object detection (Sec. V-F). We train f -
Cal and several baseline calibration techniques on the KITTI
depth estimation benchmark dataset [32]. We modify the BTS
model[36] for supervised depth estimation into a Bayesian
Neural Network by adding a variance decoder. We evaluate
the deterministic performance using SiLog and RMSE metrics
and calibration using ECE and NLL.

Discussion: Through our experiments, we conclude that
there is a trade-off between deterministic and calibration
performances as shown in Fig. 6 (also established in [17],
[7]). We can control this trade-off by varying the λ in
(7). By plotting SiLog and ECE for different values of λ
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Fig. 6: Calibration-vs-deterministic performance trade-off: We
see that this trade-off is observed for all the three calibration
techniques. For similar deterministic performance f -Cal models
are able to achieve smaller ECE values (i.e., better calibration).

we can analyze this trade-off for the baseline calibration
techniques. We note that λ may be application dependent.
To our knowledge our method is the first that enables this
tradeoff to be made easily with one parameter. In Table. I-(b),
for every method we select a λ which best balances between
deterministic performance and calibration. For this fixed λ
we run the experiment over multiple seeds and report mean
scores We see that f -Cal outperforms all baselines on all
calibration metrics. We also observe that unlike Bokeh (Table.
I - (a)), temperature scaling struggles to calibrate uncertainties
by tuning a single temperature parameter on such a large
and complex task of depth estimation. We show qualitative
results of depth estimation in figure 4.

F. Object detection
Setup: We now consider the task of object detection in an

autonomous driving seting. We calibrate probabilistic object
detectors trained on the KITTI [32] and Cityscapes [33]
datasets.We use the popular Faster R-CNN [37] model with a
feature pyramid network [38] and a Resnet-101 [39] backbone.
We use the publicly available detectron2 [40] implementation
and extend the model to output variances.

Discussion: We summarize the results of our object
detection experiments in Table I-(c, d) and Fig. 5. As can
be seen in Table I, we see that f -Cal variants, while having
competitive regression performance (in terms of mAP), exhibit
far superior calibration as reflected through ECE scores. In
Fig 5, we can see through reliability plots that the baselines
methods yield inferior calibration and are farther away from
the ground-truth distribution. It is important to note that even
though calibration loss ([7]) is able to predict a distribution
which is close to being standard normal, it is still not as
calibrated as the f -Cal estimates. This is reflected in the
reliability diagram for the Chi-squared distribution which is
much more contrastive than the curve for the standard normal
distribution. Fig 5 also shows that loss attenuation yields
very over-confident uncertainty predictions, which can be
corroborated with qualitative results shown in Figure 3. By
employing hyper-constraints over the proposed distribution,
f -Cal enforces regularization at a batch level which leads to
superior calibration performance.

Fig. 7: Ablation: (left) We plot the % drop in deterministic
performance compared to a deterministic model for different noise
distributions. For large shape parameter, the Gamma distribution
converges to a Gaussian, resulting in nearly identical performance
to a deterministic model. (right) Effect of K on the performance of
f -Cal, we see that as long as K > 50, the central limit theorem
holds and we get good calibration.

VI. DISCUSSION AND CONCLUSION

Impact of modeling assumption: We postulate that
for real-world datasets such as KITTI [32], the tradeoff
in calibration and deterministic performance occurs due to
poor modeling assumptions (i.e., modeling uncertainty using
a distribution that is quite different from the underlying
label error distribution). To investigate this, we introduce a
mismatch between the true distribution, a Gamma distribution
parameterized by γ, and the assumed distribution, a Gaussian
distribution, on the synthetic (Bokeh) dataset (Fig. 7 (left)).
For lower distributional mismatch, the performance gap
between the calibrated and deterministic models is reduced.
We attribute the deterministic performance drop for KITTI
results to this phenomenon.

The impact of this facet of our approach is significant. This
means that through experimenting with different modeling
assumptions and looking at the resulting tradeoff, we may be
able to infer something about the underlying noise distribution,
something that is typically very hard to do.

Effect of degrees of freedom (K): We analyze how the
number of degrees of freedom (K) would impact calibration
performance. We train models with different values of K
and measure the degree of calibration. In Fig. 7 (right), we
can observe that for K > 50, the central limit theorem holds
and we see superior calibration when compared with models
trained for K ≤ 50, when our approximation of a Gaussian
distribution breaks, resulting in poor calibration. For Object
detection(where thousands of proposals are being scored) and
per pixel depth estimation, minibatch size N >> K, which
allows us to effectively construct hyperconstraints.

Summary: In this work, we presented f -Cal, a principled
variational inference approach to calibrate aleatoric uncer-
tainty estimates from deep neural networks. This enables
the deep neural network perceptual models to be treated
as a sensor in a typical robot autonomy stack. Predicted
uncertainties can be used in object-based state estimation or
MPC loops. In future, we intend to extend this approach for
epistemic uncertainty estimation or non-iid settings.
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